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1 Introduction

1.1 Biological membranes

The membranes of living cells serve several related yet distinct functions. One of their most

obvious roles is to define the cell. The outer membrane of the cell serves as a barrier, forming

the limiting boundary of every cell, while intracellular membranes compartimentalize func-

tions into the organelles of eukaryotic cells. Various membranes of organelles have specific

functions associated with them because the molecules responsible for these functions are

either embedded in or localized on these membranes.

Membranes also regulate the transport in to and out of the cell. Nutrients, ions, gases, wa-

ter and many other substances are taken up by the cell, while various products and waste are

secreted. Membranes are differentially permeable, and are endowed with several modes of

passage. Molecules such as water, oxygen and carbondioxide readily diffuse through mem-

branes because of their small size. Charged ions, like sodium and potassium, and smallish

molecules such as glucose, require special carrier proteins or channels to actively transport

them across the membrane. Even molecules as large as proteins can enter or leave cells by

being incorporated into vesicles, in processes called endocytosis and exocytosis respectively.

The outer membrane of the cell also plays a key role in signal recognition. Information

that impinges on the cell, in the form of chemical or electrical signals, may initiate activities

within the cell, such as protein production, muscle cell contraction or cell division. The

signalling molecules are sometimes transmitted into the cell, but in most cases they bind to

specific receptors in the plasma membrane which generate a secondary signal inside the cell.

Futhermore, membranes need to be flexible and elastic in order to allow motion and

growth, to cope with external forces, and to execute many of the aformentioned tasks.

1



1. INTRODUCTION

Figure 1.1: An amphiphilic molecule: (A) Chemical structure. (B) A schematic representa-

tion.

In this thesis, the dynamical properties of membranes are studied by molecular dynamics

simulations. This chapter gives an overview of the preceding experimental studies of these

properties, and a brief introduction to the basics of simulations. But first we discuss the

physical-chemical structure which enables membranes to perform all above tasks.

1.2 Lipids

As we have seen, every cell and organelle needs some sort of physical barrier to keep its

contents in and the external environment out, as well as some means of controlling exchange

between its inside and the external environment. Ideally, such a barrier should be imper-

2



1. INTRODUCTION

Figure 1.2: The lipid bilayer as the basis of membrane structure. Due to their amphiphatic

nature, lipids in aqueous environment orient themselves in a double layer, with the hydropho-

bic tails buried inside and the hydrophilic heads pointing toward the aqueous milieu on either

side of the membrane.

meable to most of the molecules and ions found in cells and their surroundings. Otherwise,

substances could diffuse freely in and out, and the cell would not really have a defined content

at all. On the other hand, the barrier cannot be completely impermeable, or else desired ex-

changes between the cell and its environment could not take place. Moreover, such a barrier

must be insoluble in water so that it will not be dissolved by the aqueous medium of the cell.

At the same time, it must be readily permeable for water, because water is the basic solvent

system of the cell and must be able to flow into and out of the cell as needed. As one might

expect, the membranes that surround cells and organelles satisfy these criteria admirably.

A membrane is essentially a hydrophobic permeability barrier consisting of lipids, pro-

teins, and (in case of human and animal cells) cholesterol. These molecules have both a

hydrophobic and a hydrophilic region and are therefore referred to as amphiphilic molecules

(the Greek prefix amphi means ‘of both kinds’, and ‘philos’ means friend). Membrane phos-

pholipids, illustrated in Fig. 1.1, consist of a polar ‘head’ and two nonpolar hydrocarbon

‘tails’. The polarity of the hydrophilic head is due to the presence of a negatively charged

phosphate group linked to a positively charged amine. When exposed to an aqueous environ-

ment, amphiphatic molecules spontaneously arrange themselves into clusters, such that their

polar heads are facing out toward the aqueous phase, shielding their hydrophobic tails from

the water. The resulting structure is the bilayer shown in Fig. 1.2. The hydrocarbon tails ex-

tend inward, forming the continuous hydrophobic phase of the membrane. Every biological

membrane has such a lipid bilayer as its basic structure. Each of the phospholipid layers is

3



1. INTRODUCTION

Figure 1.3: Membrane structure. Biological membranes consist of cholesterol and a variety

of proteins within a lipid bilayer. Picture copied f rom htt p : ��� en � wikipedia � org � wiki � Cell-

membrane

about 4-5 nm thick, so the bilayer has a width of about 8-10 nm.

Embedded within or associated with the lipid bilayer are various membrane proteins, see

Fig. 1.3. These proteins are almost always amphiphatic, and they orient and fold themselves

in the lipid bilayer accordingly. Hydrophobic regions of the protein associate with the interior

of the membrane, whereas hydrophilic regions protrude into the aqueous environment at the

surface of the membrane. Depending on the particular membrane, the membrane proteins

may play any of a variety of roles. Some are transport proteins, responsible for moving

specific substances across an otherwise impermeable membrane. Others are enzymes that

catalyse reactions associated with the specific membrane. Still others are signal receptors

on the outer surface of the cell membrane. We study idealised membranes, containing no

proteins.

Membranes play a key role in the cell structure – their mechanical and flow properties

are important for the proper functioning of the cell. Cells in a tissue interact with their neigh-

bours, while other cells, like red blood cells, interact with the surrounding liquid. So, every

living cell experiences bending, stretching, compression, and flow deformations. Because the

4



1. INTRODUCTION

Figure 1.4: Video micrograph of a vesicle area expansion test by suction into a pipet. (a) The

vesicle at low tension. (b) The vesicle at high tension. The change in projection length ∆L is

proportional to the change in apparent surface area. Picture courtesy o f pro f � E � Evans �
lipids in a membrane are not covalently bond, a membrane will deform in response to these

forces. The mechanical properties of membranes include the elastic modulus or area com-

pressibility and the bending ridigity. Our focus is on the flow properties: the surface shear

viscosity of a membrane resisting a lateral shear deformation and the intermonolayer friction

opposing lateral velocity differences between the two leaflets of the bilayer.

1.3 Experiments

Over the last few decades, a variety of experimental techniques have been applied to inves-

tigate the static and dynamical properties of lipid bilayers. In this section we briefly review

several relevant techniques.

Various techniques have been used to quantitate mechanical stretch properties of bilayers.

Most prominent is the micropipette approach, pioneered by Evans for giant vesicles [1, 2].

This technique is based on measuring the vesicle extension in the tip of a pipette due to

an applied pressure gradient, see Fig. 1.4. Photon correlation spectroscopy and dynamic

5



1. INTRODUCTION

Figure 1.5: Illustration of the relative flow produced between layers as the bilayer is forced

to flow through a region of enormous change in curvature ( � 1000-fold increase) as it forms

an ultrasmall tube. Picture courtesy o f pro f � E � Evans �
light scattering provide the monitoring of small vesicles under osmotic stress [3, 4]. The

cryoelectron microscopy of vesicles subjected to osmotic stress [5], and NMR and x-ray

diffraction of strongly dehydrated multibilayer arrays [6] are also used for the calculation of

the elastic area compressibility modulus. Furthermore, the combination of NMR and x-ray

techniques yields accurate determinations of the lateral area per lipid molecule.

The bending stiffness of a bilayer has traditionally been derived from a detailed analysis

of thermal shape fluctuations of flaccid vesicles [7, 8, 9] and by measurement of the forces

needed to pull nanoscale bilayer tubes from vesicles under tension [10, 11, 12]. Thus, the

bending stiffness can be calculated directly from measurements of the tether radius as a func-

tion of force, see Fig. 1.5. The micropipette pressurization of a single vesicle can also be used

to quantitate the bilayer bending modulus, measuring the entropy-driven tension that arises as

thermal bending undulations are smoothed under pipette aspiration of a giant vesicle [13, 14],

see Fig. 1.4.

The above described technique involves the formation of a thin tube (tether) of phospho-

lipid bilayer from a large vesicle. Using last method [11], the intermonolayer friction of the

vesicle has been measured for the first time by Evans et al.. The demonstration that inter-

6



1. INTRODUCTION

Figure 1.6: Three approaches to measure the friction coefficient of a particle moving on

a membrane. (A) Vesicle fixed to a surface with two possible positions of a particle ad-

hered to the vesicle membrane. (B) A Brownian particle performs a random walk at the

bottom (or top) of the vesicle. (C) A heavy particle sediments towards the vesicle bottom

due to gravity. (D) A particle is driven towards the axis of an optical trap beam by the

radiation pressure force FRP. The sketch is exaggerated in terms of particle-trap distance.

Picture courtesy o f pro f � R � Dimova �
monolayer friction is an important phenomenon for the relaxation processes of fluctuating

bilayers has been proved by spin echo experiments of highly ordered stacks of lipid bilayers

[15] and using video microscopy studies of thermal shape fluctuations of vesicles [16]. These

experiments support the theory by Evans and Yeung and by Seifert and Langer that the lipid

bilayer is not a single entity, but consists of two layers coupled by friction.

The surface viscosity of lipid vesicles are also calculated in the tether formation experi-

ment [17]. Two other optical techniques for calculating surface shear viscosity of a membrane

are falling-ball viscosimetry and optical dynamometry [18, 19] see Fig. 1.6. Particles move

on the surface of the vesicle, spontaneously (Brownian motion) or driven by an external force,

either gravity or a laser beam’s radiation pressure. The value of the membrane hydrodynamic

7



1. INTRODUCTION

shear viscosity can be deduced from the analysis of the particle motion.

All of these techniques have increased our understanding of lipid bilayer and cell me-

chanical properties.

1.4 Computer simulations

Computer simulations are a very powerful technique to investigate material properties, in-

cluding membranes. They serve as a complement to conventional experiments, providing

detailed information on a system while allowing us full control over the system. Computer

simulations act as a bridge between microscopic length and time scales and the macroscopic

world of the laboratory: we provide the interactions between particles, and obtain predictions

of bulk properties. Simulations also act as a bridge in another sense: between theory and

experiment. We may test a theory by conducting a simulation using the same model. We may

test the model by comparing with experimental results.

Molecular dynamics (MD) is based on the dynamical evolution of a many particle system.

It consists of the numerical, step-by-step, solution of the classical equations of motion,

mi
d2ri

dt2 ��� ∇Fi, (1.1)

here mi is the mass , ri is the poasition, and � ∇Fi is the force on interacting particle i. In

the l.h.s. d
dt is the time differentiation. For this purpose we need to be able to calculate the

force Fi acting on the atoms, and these are derived from a potential energy U(rN), where

rN �	� r1 
 r2 
 ����� 
 rN � represents the complete set of 3N atomic coordinates. After that we

integrate Newton’s equations of motion. This step and the previous one make up the core of

the simulation and are calculated using for instance the Verlet scheme [20, 21],

vi � t  ∆t
2 � � vi � t � ∆t

2 �  Fi � t �
mi

∆t (1.2)

ri � t  ∆t � � ri � t �  vi � t  ∆t
2 � ∆t (1.3)

Where ∆t is an integration time step. They are repeated until we have computed the time

evaluation of the system for the desired length of time.

An important aspect of simulating a system is the implementation of the boundaries. The

way this is done depends on the problem under consideration. In case one is interested in bulk

8



1. INTRODUCTION

Figure 1.7: A two-dimensional periodic system. Molecules can enter and leave each box

across each of the four edges. In a three-dimensional example, molecules would be free to

cross any of the six sqare faces of a cube.

properties of a system, it is convenient to introduce periodic boundary conditions. The central

box is repeated infinitely many times in all directions. The idea is that particles leaving the

box at one side enter the box at the opposite side. This is shown in Fig. 1.7. The number

of particles in a simulation box is thus conserved. In cases when non-equilibrium molecular

dynamic simulations have been used to set up and maintain a steady homogeneous shear flow

with a linear velocity profile we used the Lees-Edwards boundary conditions. The idea is

that using ’sliding bricks’ above and below the central box induces planar Couette flow in a

simulation, see Fig. 1.8.

Without potential cut-off, the particles in the central box interact with all the particles

in their own box as well as with all the particles in the periodic images. That remarkably

decrease the speed of calculations.

In the remainder of this section we briefly review the different lipid membrane models

that have been described in the literature.

Bilayer models with atomic resolution have been studied by extensive computer simu-

lations [22, 23, 24, 25]. Since these simulations require a huge amount of computing time,

they are restricted to relatively small bilayer segments which contain 50-200 amphiphilic

molecules. For a lipid bilayer, this corresponds to a membrane area of the order of 3 nm2

to 8 nm2. With the aim of increasing efficiency of computer simulations, various simplified

9



1. INTRODUCTION

Figure 1.8: Homogeneous shear boundary conditions.

models have been introduced.

The evolution of lipid membrane models began with modelling the oil-water interface as a

first approximation. The first model of the interface was a lattice model, which was proposed

by Widom and co-workers [26, 27, 28, 29]. Their model of the interface predicts a three-

phase equilibrium and ultra-low surface tensions. Various other lattice models with small

differences from the original one (Schick and Gompper, Alexander) have since appeared in

the literature. The common basic ingredient of all of them is the presence of three different

chemical species a, b, and c with at least unequal interactions between the amphiphile (c) and

the water (b) and oil (c) species. The difference between them is the location of the particles,

on the bonds of the lattice or on lattice sites.

Another basic model is the coarse-grained surface model for a membrane, developed by

Telo da Gama and Gubbins [30, 31]. Three different chemical species are moving off-lattice

with unequal interactions between the amphiphile and other two species. This model also

has a lot of offsprings; for a recent reviews see [32]. The single most obvious advantage of

using off-lattice models in this context is their lattice independence. All mentioned above

models focus on membrane behaviour on length scales large compared to the membrane

thickness. Thus, in these models the bilayer thickness is treated as a small-scale cut-off and

the molecular structure of the bilayer is not taken into account explicitly.

Recently, models appeared which bridge the gap between these two types of models, i.e.,

between discrete models with atomic resolution on the one side and flexible surface models

10



1. INTRODUCTION

on the other side. These new models describe the membrane behaviour on intermediate length

scale. The first and simplest model has been proposed by Smit [33]. He represented a lipid by

two particles, a hydrophilic one and a hydrophobic one, which are connected via a harmonic

spring. The surrounding solvent is represented by particles identical to the head particles.

All these particles interact via a Lennard-Jones potential. Smit demonstrated in molecular

dynamics simulations that the interfacial tension could be reduced by the addition of am-

phiphilic compounds. The resolution of this model helps to investigate membrane properties

at two different levels: the simplicity of the model allows large numbers of molecules to in-

vestigate bulk properties of the membrane, while the separate representation of each molecule

helps to investigate surface and even intra-membrane properties. A number of models have

appeared since, using the same ideas, but with different approximations of the atomic rep-

resentation and particle interactions [34, 35, 36]. The main idea in all of them is that each

surfactant molecule consists of a small hydrophilic part, called ”head”, and a large hydropho-

bic part, called ”tail”. The number of ”head” and ”tail” particles varies across models, each

particle representing a few up to a dozen atoms. The particles are connected by bonds in

different ways, depending on the topology of the molecule. The bending stiffness of chains

is incorporated by using a bending potential between 3 neighbouring particles, a dihedral

potential incorporated between 4 neighbouring particles is responsible for 3D stiffness of the

chain. Binary soft-core potentials are involved in interactions between all types of particles.

The big advantage of these models is the possibility to obtain ”exact” predictions of mem-

brane bulk properties by providing the interactions between molecules. The predictions are

”exact” in the sense that they can be made as accurate as we like, subject to the limitations

imposed by the computer budget. All molecular dynamic simulations in this work are based

on the models of Goetz and Lipowsky and Marrink et. al.

1.5 Thesis outline

In chapter 2 we establish methods to determine both the shear viscosity and inter-monolayer

friction coefficient of bilayers from sheared molecular dynamics simulations. By applying

a shear perpendicular to the bilayer, i.e. the vorticity lies parallel to the bilayer, we find a

linear velocity profile for the amphiphiles, from which we deduced the in-plane viscosity.

11



1. INTRODUCTION

The friction between the upper monolayer and the lower monolayer as they slide along one

another, as determined by applying a shear field parallel to the bilayer, was linear in the

velocity difference between the two monolayers. For very high shear rates the bilayer became

instable and disintegrated.

In chapters 3 and 4 we present simulations of the dynamics of stationary bilayers. Molec-

ular dynamics simulations of a coarse-grained bilayer model have been used to obtaine the

time correlation functions of the thermal undulations and density fluctuations of a lipid mem-

brane. We observe a double-exponential decay, with relaxation rates in good agreement with

the theory by Seifert and Langer [37]. Intermonolayer friction resulting from local velocity

differences between the two monolayers is shown to be the dominant dissipative mechanism

for fluctuations with wave lengths below � 0 � 1µm.

In chapter 5 molecular dynamic simulations show the impact of pair friction and different

architectures of lipids on the dynamical parameters of a lipid bilayer, such as the surface

viscosity and the intermonolayer friction.

In chapter 6 a coarse-grained model is studied for the simulation of a wormlike micelle.

We demonstrate that our worm is inherently stable. The worms are observed to buckle under

sufficiently strong compression forces. The persistence length and bending rigidity follow

from analysing the thermal undulations of a tensionless worm. System size dependencies of

the elastic modulus of the worm, are eliminated by explicitly calculating the arc length of the

worm.

At the end of the thesis, the results are summarized in both English and Dutch.

12
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2
Surface Viscosity, diffusion,

and intermonolayer friction:

simulating

sheared amphiphilic bilayers

The flow properties of an amphiphilic bilayer are studied in molecular dynam-

ics simulations, by exposing a coarse grained model bilayer to two shear flows

directed along the bilayer surface. The first field, with a vorticity perpendicular

to the bilayer, induces a regular shear deformation, allowing a direct calculation

of the surface viscosity. In experiments this property is measured indirectly, by

relating it to the diffusion coefficient of a tracer particle through the Saffman-

Einstein expression. The current calculations provide an independent test of this

relation. The second flow field, with a vorticity parallel to the bilayer, causes

the two constituent monolayers to slide past one another, yielding the interlayer

friction coefficient. �
2.1 Introduction

Amphiphilic bilayers and biological membranes are planar self-assembled aggregates of am-

phiphilic molecules, such as surfactants or lipids, in which a hydrophilic head group is cova-

lently bound to a hydrophobic tail. These structures are locally flat, but smoothly undulating

on a length scale well beyond their thickness [2, 3]. Because bilayers are held together by

relatively weak non-bonded interaction forces, they behave in many respects as two dimen-

sional liquids suspended in a three dimensional solvent matrix. This makes bilayers very

susceptible to external forces, which give rise to deformations of the overall shape of the bi-� The work described in this chapter previously appeared in Biophysical Journal 89, 823 (2005) [1].
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layer and to flow within the bilayer. Examples hereof include the elongation and rupture of

vesicles sucked into a pipet [4, 5], the shear induced transition of a stack of bilayers into an

onion like structure [6, 7, 8, 9], the large changes in shape of red blood cells as they creep

through narrow passageways [10], the resilience of a cell when prodded by a needle, and the

pulling of tethers from a vesicle by a localised force [11, 12, 13, 14, 15, 16]. In this paper we

will concentrate on deformations that preserve the overall shape of the bilayer.

A flat or weakly undulating bilayer oriented parallel to the xy plane, see Fig. 6.1, can

be exposed to two distinct flow deformations, as illustrated in Fig. 2.2. The first flow field,

v � x � ��� γ̇y 
 0 
 0 � , describes the linear velocity profile of a regular shear flow with a shear rate

γ̇ . Following the convention in the literature on sheared block-copolymers [17], this flow

is referred to as a perpendicular shear flow. The resistance of the bilayer against this flow

is characterised by a two dimensional surface viscosity, ηs, which, analogous to the regular

three dimensional viscosity, relates the shear force per unit of length of bilayer to the shear

rate. Note that both leaflets of the bilayer move in unison under this field. In the so-called

parallel flow field, v � x � ��� γ̇z 
 0 
 0 � , on the other hand, the two monolayers of the bilayer are

sliding past one another as two flat rigid objects with velocities � ∆vêx. A friction coefficient,

ξ , is defined by the ratio between the sliding force per unit of bilayer area and the velocity

difference between the two leaflets.

The viscosity and friction coefficient are not easily accessible under experimental condi-

tions. Forced deformations of a bilayer frequently culminate in the simultaneous occurrence

of both flow fields, and are often accompanied by bending and stretching of the bilayer. Non-

uniform stress distributions resulting in diffusion-like stress relaxation processes, both within

and between (’flip-flops’) the monolayers, further complicate the interpretation of the experi-

mental data. For an extensive discussion of these processes, we refer the reader to Evans and

co-workers [12, 13].

Viscosity measurements by pulling a tether from a vesicle, for instance, are hampered by

the above effects. It proves more convenient, therefore, to deduce the viscosity from the trans-

lational and rotational diffusion coefficients of fluorescent transmembrane tracer particles in

a quiescent bilayer, see reference [15] and references cited therein, using a Stokes-Einstein

type expression derived for this particular system by Saffman [18]. Saffman elegantly solved

Stokes’ equations of the creeping flow around a cylinder (i. e. the tracer) moving in a thin
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sheet of viscous liquid (i. e. the bilayer), by emphasising the role played by the liquid, of vis-

cosity ηw, on either side of this sheet. Falling ball viscosimetry [19], in which a microsphere

moving under gravity is constrained to a bilayer vesicle, is essentially based on the same the-

ory. An independent validation of the Saffman-Einstein expression for use with bilayers is

therefore welcomed.

Friction coefficients have been measured by pulling a thin tether from a vesicle [11, 12,

13, 14], where the sharp change in curvature at the vesicle-tether junction induces a velocity

difference between the inner and outer layers. A second method focuses on the slip occur-

ring when amphiphiles flow through an hour glass shaped fusion pore from a bilayer under

low surface tension to a bilayer under a higher tension [20]. The wide range of the few re-

ported friction coefficients illustrates the complexity of (the interpretation of) these ingenious

measurements, and the sensitivity to the amphiphiles used in the experiment.

The objective of this paper is to establish methods to determine both the shear viscosity

and the friction coefficient of a bilayer by means of computer simulations on the molecular

level. Bilayers have been the subject of numerous modelling studies, which for the most part

focused on the equilibrium properties and on the self-assembly from a disordered amphiphilic

solution [21, 22, 23, 24, 25, 26]. To the best of our knowledge, the flow behaviour of a bilayer

has never been simulated at this level. Since our aim here is to develop and validate new

techniques, we opted for a relatively simple and fast coarse grained amphiphilic model known

to reproduce realistic thermodynamic properties [27, 28, 29, 30, 31]. No claims are made to

the applicability of the model to calculate realistic values of dynamical properties. Our aim

is to develop methods and to test the applicability of the Saffman-Einstein equation. The

model and other simulation details are summarised in Section 6.3. Results are presented in

Section 6.4, where we describe the response of the bilayer, and of the individual amphiphiles,

to the applied flow fields. We end with a discussion of the applied methods, and a comparison

with the available experimental data, in Section 2.4.

2.2 Setup

The speed of coarse grained (CG) simulation models makes these models very attractive for

simulations requiring large length and time scales, where fully atomistic models are compu-
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x

y
z

Figure 2.1: A snapshot of the bilayer-liquid simulation box. The number of surrounding

solvent particles has been reduced for clarity.

tationally too demanding, and to put new simulation techniques to the test, as is the case here.

In coarse grained models, a number of atoms is grouped together to form a CG particle. The

equation of motion of the CG particle follows, in principle, by averaging over the dynamics

of the constituent atoms [32]. The resulting Langevin equation combines conservative forces

with friction and random forces [33]. The conservative forces are responsible for the thermo-

dynamic properties of the CG model, and therefore deservedly lie at the heart of the currently

available fitting procedures [25, 26, 28]. In case one restricts attention to structural and ther-

modynamic properties, the precise values of the friction and random forces are irrelevant. Of

course, as soon as one wants to calculate realistic dynamical properties, the precise nature

of these forces matters a lot. Unfortunately it is still not fully understood how to calculate

friction and random forces from atomistic simulations [32, 34]. As was already mentioned

in Section 2.1, however, our aim is primarily to develop and test methods to study the flow

properties of a bilayer. We therefore decided to use a simplified CG model, in which friction

and random forces are neglected altogether.

The simulation model we used was developed by Goetz and Lipowsky [27, 28]. They

chose for an amphiphilic architecture in which the head is represented by a single bead (h)
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Figure 2.2: Side views of the simulated system, highlighting parallel (left) and perpendicular

(right) shear flows.

and the tail is reduced to four beads (t) representing roughly three CH2 units each. The

solvent consists of loose water beads (w), corresponding with two water molecules. Inter-

actions between like particles, as well as the hydrophilic head-water interactions, are mod-

eled by a Lennard-Jones potential, ΦLJ � r � � 4ε � � r � σ ��� 12 ��� r � σ ��� 6 � , with ε � 2 kJ/mol and

σ � 1 � 3 nm. The hydrophobic tail-water and tail-head interactions are modeled by a purely

repulsive potential, Φrep � r � � ε � r � � 1 � 05σ � � � 9. The non-bonded forces are implemented in a

shifted-force fashion, ensuring a smooth truncation of the energy and the force at the cut-off

distance of 2.5 σ . The particles of the amphiphilic molecules are held together by harmonic

bond potentials, Φbond � l � � 5000εσ � 2 � l � σ � 2. An angle potential between every set of three

consecutively bonded particles, Φangle � φ � � 2ε � 1 � cos � φ � � , introduces a bending stiffness.

There are no dihedral potentials. All particles have the same mass m of 36 a.u., and the

number density is 2 particles per 3σ 3. In all our simulations the temperature T was 325 K,

or 1.35 ε � kB with kB Boltzmann’s constant, and was maintained by means of a Nosé-Hoover

thermostat. The time step used in the Verlet leapfrog scheme was τ � 500, where τ � � mσ 2 � ε
is the unit of time. Previous simulations with this CG model showed that its equilibrium area,

elastic modulus, bending rigidity and line tension coefficient compare favourably with exper-

imental data [27, 28, 29, 30, 31]. All simulations were run using the DL POLY 2.0 package

[35], tailored to the specifications of the problem.

Rectangular periodic simulation boxes were used, each having a square ground plane of

sides L � parallel to the bilayer and the xy plane, and a height L � perpendicular to these.
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Initial bilayer-solvent configurations were created by constructing two parallel square lattice

layers of straight amphiphilic molecules, 1152 in total, with their heads pointing outward.

The 10 800 solvent particles were placed at random in the box, taking care to avoid overlap

with the bilayer and with previously inserted solvent particles. The boxes were then energy

minimized for a limited number of steps, followed by equilibration runs at the desired tem-

perature. A snapshot of the resulting bilayer box is shown in Fig. 6.1. On varying L � it was

found that at L � � 34.9σ the bilayer is in the tensionless state, in which the average pressures

parallel and perpendicular to the bilayer are identical, to wit, about 1.5 εσ � 3 or 1.4 kbar. The

structure factors S of the thermal undulations followed the theoretical prediction for the ten-

sionless state, S � q � ∝ q � 4, with q a wave vector commensurate with the box dimension L �
[2, 3, 27]. The box height of 20.4 σ allows the solvent enough freedom to reach an isotropic

pressure in the middle between two periodic images of the bilayer [28].

Simulations under shear rate γ̇ were run using Lees-Edwards boundary conditions [36,

37], such that the flow was directed along the x axis, i. e. such that v � x � � v � x � êx. For

homogeneous solvent boxes the shear direction is of course irrelevant, but this is no longer the

case for boxes with a bilayer. A perpendicular flow was generated such that v � � x  L � êy � �
v � � x �  γ̇L � and a parallel flow such that v � � x  L � êz � � v � � x �  γ̇L � . Analogous flow fields

along the y axis produce identical results. The Nosé-Hoover thermostat [36] was adapted for

these shear conditions, by calculating the temperature from the velocity distribution relative to

the local flow field and by rescaling only superficial velocities. In these calculations the flow

fields were assumed to be given by appropriate linear expressions, although some runs yielded

a distinctly non-linear profile. Using the actual flow field in the thermostatting routine did not

significantly change the results. The structure factors S � q � of the thermal undulations of the

bilayer still scaled as q � 4 under shear, suggesting that the flow does not induce any significant

tension on the bilayer. After turning on the shear flow, the simulations were continued till all

transient effects had died out and a steady laminar flow field had formed, before starting the

production runs.

Three techniques were used to determine the overall shear viscosities of the simulated

systems [36]. In the non-sheared runs, the viscosity ηtot was calculated using the Green-

Kubo relation

ηtot � V
kBT

� ∞

0 � Pαβ � t � Pαβ � 0 ��� dt, (2.1)
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where Pαβ is an off-diagonal (α �� β ) element of the pressure tensor, V is the volume of the

box, and the angular brackets denote a canonical average. For a sheared system the viscosity

is defined as the ratio between the total shear force per unit area and the shear rate,

ηtot � Fshear � A
γ̇ � � Pαβ �

γ̇
. (2.2)

For systems containing a bilayer we use α � x and β � y or z for the perpendicular and

parallel shear flows, respectively. The third method is based on the realization that the rate

of energy production, ηtotγ̇2V , by the shearing boundaries is easily calculated as the time

derivative, Ė, of the extended Hamiltonian of the system plus thermostat, to arrive at

ηtot � Ė
γ̇2V

. (2.3)

Notice that in the stationary state the energy of the system is constant and therefore Ė is

equal to the rate of energy extraction from the system by the thermostat. A similar approach

was recently proposed by Holian [38]. The conversion from total shear viscosities into the

viscosity and friction coefficient of the bilayer will be discussed at the appropriate places in

the next section.

2.3 Results

We start with the viscosity of the solvent. Two boxes were filled randomly with 2250 and

66 667 solvent particles, respectively. For both boxes and for all three calculation methods

mentioned in the previous section, we found a viscosity ηw of just over 1.0 ε1  2m1  2σ � 2,

virtually independent of the applied shear rate γ̇ ranging from zero to 0.2 τ � 1. This value

translates into 1 � 3 ! 10 � 4 Pa s, which amounts to about a quarter of the experimental viscosity

of 5 ! 10 � 4 Pa s for water at this temperature. The diffusion coefficient of the solvent particles

was found to be 0 � 1σ 2 � τ , or 1 ! 10 � 8 m2/s, which is about four times larger than the experi-

mental self-diffusion coefficient, 2 � 5 ! 10 � 9 m2/s, of a water molecule at this temperature.

Using the same approaches, the viscosity of a homogeneous liquid of chains of five parti-

cles, t5, was found to be ηb " 2 � 1ε1  2m1  2σ � 2, twice the value obtained for the solvent, again

independent of the shear rate. For comparison, the experimental viscosity of a comparable

liquid of hydrocarbon chains, n-hexadecane, is about eight times higher [39]. These results
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Figure 2.3: The surface viscosity of the bilayer, derived from simulations with a perpendicular

shear flow, plotted against the applied shear rate. The data points were obtained by calculating

the total shear force on the system, i.e. the first term on the right hand of Eq. 5, from the

pressure (solid circle) or from the thermostat (solid square).

indicate that the model is not well suited to aim for dynamical properties in quantitative agree-

ment with experiments. Marrink et al. [26], following Groot and Rabone [23], addressed the

spurious speed-up of their coarse grained model by introducing an ad hoc scaling factor of

four to relate the elapsed simulation time to the real time. An alternative physically sound

route to solve the dynamical discrepancy is to maintain the friction and random forces in the

equations of motion of the coarse grained particles. In case these forces grow large relative

to the inertial forces, one is of course better off running Brownian dynamics.

2.3.1 Perpendicular shear

Of the two interesting shear directions of a box containing a bilayer, the perpendicularly

sheared system will be discussed first. The total viscosity of the system has been calculated

for the quiescent box, as well as for those with shear rates ranging from 0.001 to 0.1 τ � 1,

to be about 1.6 ε1  2m1  2σ � 2 in each case. In the steady state, the velocity distribution of the

amphiphilic particles closely follows a linear flow field. This suggests that the bilayer behaves
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Figure 2.4: Sketch of the velocity profile (line) and of the forces (arrows) for a bilayer system

under parallel shear.

like a regular sheared liquid (be it one in which the molecules are bound to a plane), which is

a prerequisite for a well-defined bilayer surface viscosity. Analogous to Eq. (2.2), the surface

viscosity is defined as the total shear force on the bilayer per unit of length, divided by the

shear rate,

ηs � Fbilayer � L �
γ̇

, (2.4)

Fbilayer � � Pxy � L � L � � ηwγ̇L � � L � � hs � . (2.5)

The last equation defines the shear force on the bilayer, Fbilayer, as the total shear force across

the xy plane minus the contribution acting on the solvent, where hs " 6 � 8σ is the thickness

of the bilayer. The shear viscosity of the bilayer was found to be about 20 ε 1  2m1  2σ � 1, or

8.5 ! 10 � 13 Pa m s. Figure 2.3 reveals a weak dependence of this value on the shear rate, with

a reduction by about 10% over the entire range covered.

2.3.2 Parallel shear

Under a parallel shear field the total viscosity of the box was about 1.4 ε 1  2m1  2σ � 2, for shear

rates ranging from 0.002 to 0.05 τ � 1. A similar value was obtained by applying the Green-

Kubo relation to the quiescent box. As in the previous section, we now have to convert this
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Figure 2.5: Velocity profile of a bilayer system at a parallel shear rate of 0.03 τ � 1.

number into a property of the bilayer.

Because of the orientation of the bilayer relative to the sheared boundaries, we expect a

velocity profile like the one drawn in Fig. 2.4. The profile in the solvent will be linear, with a

slope γ̇w different from the imposed shear rate γ̇ . In the middle of the box the two leaflets of

the monolayer are sliding past one another, like two flat solid objects, with velocities � ∆vêx,

giving rise to a friction force between the two leaflets. The friction coefficient of this motion

follows from the shearing force F exerted on the top (bottom) monolayer, by the solvent

above (below) the bilayer, according to

ξ � 2F � L2�
2∆v

. (2.6)

All that remains is to determine the two unknowns featuring on the right hand side of the

above expression.

The actually calculated velocity profile, see Fig. 2.5, shows that the velocity gradient

within the bilayer region is considerably smaller than in the solvent, but not zero. This is

caused by a convolution of the idealised profile with the thermal undulations of the bilayer.

Unfortunately, this renders direct estimates of ∆v from the velocity profiles highly inaccurate.

The shear rate of the solvent at some distance from the bilayer, however, is not affected by
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Figure 2.6: Probability distributions of displacements, along the flow direction, of head par-

ticles in the top (right peak) and bottom (left peak) monolayers. At a shear rate of 0.03 τ � 1,

the amphiphiles cover a distance of nearly three box lengths over a period of about 18 000 τ .

The solid lines are Gaussian fits.

these undulations. Under the assumption of stick boundary conditions at the bilayer-solvent

interface, we can calculate the slip velocity from

2∆v � γ̇L � � γ̇w � L � � hs � . (2.7)

This velocity turns out to be proportional to the overall shear rate.

Alternatively, one could look at the distances travelled by the amphiphilic particles, along

the flow direction, over the course of a simulation. This distribution is shown in Fig. 2.6 for

the head particles of the two monolayers, excluding a few that flipped from one monolayer to

the other. Because of the covalent bonding, the distributions for the tail particles are virtually

identical. From the location of the peak, divided by the length of the simulation, we again

obtain ∆v. The numerical values obtained by both methods agree very well, implying stick

boundary conditions at the two bilayer-solvent interfaces. Consequently, the force exerted on

the top monolayer by the solvent above the bilayer can be calculated from the shear rate in

the solvent, F � γ̇wηwL2� . Inserting these results in Eq. (2.6), we find a friction coefficient

ξ � 3 � 7ε1  2m1  2σ � 3, or 1.4 ! 106 N s m � 3. As shown in Fig. 2.7, this value is effectively
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Figure 2.7: The friction coefficient of sliding monolayers, as a function of the slip velocity.

Slip velocities were calculated from Eq. (2.7) (squares) and from the average displacements

in Fig. 2.6 (circles). The arrow denotes the effective friction coefficient ξ # of a slab of t5

molecules with the same thickness as the bilayer (see text for details).

independent of the slip velocity.

We end this section with a discussion of structural properties of a bilayer under a parallel

shear deformation. Figure 2.8 shows the distribution of longitudinal angles φ of the end-to-

end vectors r15 of the amphiphiles, i. e., the orientation of the molecule in the plane of the

bilayer. In the quiescent box this distribution is homogeneous, as expected for a bilayer in the

liquid-crystalline or fluid Lα phase. The sheared system, on the other hand, reveals maxima

at φ � 0 and π rad, indicative of a propensity to tilt along the shear direction. A distribution

of the tilt angles, defined as the angle θ between the z axis and the projection of r15 on the xz

plane, is presented in Fig. 2.9. The two peaks of the distribution, corresponding to the upper

and lower monolayer, lie at 0 and π rad in the quiescent box, and shift by ∆θ under shear.

This average tilt is proportional to the slip velocity and the overall shear rate. The length

distribution of the end-to-end vectors is not affected by the shear flow.

It is interesting to note that for overall parallel shear rates beyond 0.05 τ � 1, which corre-

sponds to a slip velocity of about 11 ! 10 � 3σ � τ , the bilayer becomes unstable. We observed
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Figure 2.8: Histogram of the orientation of amphiphilic molecules in the plane of the bilayer.

The solid line refers to a quiescent system, the dotted line to a parallel shear rate of 0 � 05τ � 1.

pronounced undulations of the bilayer, amphiphiles piling up to form buds, and the creation

of transmembrane pores. Eventually the bilayer is torn apart. A further discussion of these

phenomena will be presented elsewhere.

2.4 Discussion and Conclusions

The results of the preceding section show that non-equilibrium coarse grained simulations can

be used to study the flow characteristics of an amphiphilic bilayer, to wit, the bilayer viscosity

ηs for co-planar shear deformations and the friction coefficient ξ between sliding monolayers.

Both are obtained by placing the simulation box under a shear flow, with vorticity oriented

perpendicular and parallel to the bilayer, respectively. The shear force acting on the bilayer is

then easily obtained by subtracting the shear force on the solvent from the total shear force.

The common experimental method to obtain a surface viscosity is to measure the diffusion

coefficient D of a tracer particle, a cylinder of radius a with a length equal to the bilayer

thickness hs. Assuming the bulk viscosity ηw of the surrounding solvent is much smaller (but
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Figure 2.9: Probability distribution of the tilt of the amphiphiles in the flow direction. The

solid line refers to a quiescent system, the dotted line to a parallel shear rate of 0 � 05τ � 1.

not zero) than that of the bilayer, Saffman [18] derived that

D � kBT
4πηs $ ln % ηs

aηw & � γ ' , (2.8)

where kB is Boltzmann’s constant and γ " 0 � 577 is Euler’s constant. In case ηs � hs ( ηw, this

equation also holds when the tracer particle sticks out of the bilayer. Assuming that Eq. (2.8)

may be used even at the molecular level, we set a equal to σ and find D � 1 � 3 ! 10 � 2σ2 � τ .

Both from a direct calculation of the mean square displacements of the amphiphiles in a

quiescent bilayer, as well as from the spreading of the distributions in Fig. 2.6, we find

D � 1 � 8 ! 10 � 2σ2 � τ . Using half the surface viscosity in Eq. (2.8), because the diffusing

amphiphiles span only half the bilayer [15], we get the same result. This agreement must

be considered to be a bit fortuitous, of course. First, we have assumed that the radius of

the flexible amphiphile is equal to σ , and thus includes the first ”solvation shell”. Second,

the diffusion coefficient calculated from the Saffman equation is relatively insensitive to the

surface viscosity, as illustrated by the two calculated values of D.

It is tempting to relate the viscosity ηs of the bilayer to the viscosity ηb of a bulk liquid

of like molecules, in this case chains of five tail particles, t5. This connection appears fre-
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quently in the literature [13, 20], and is given by η #s � ηbhs. Inserting numerical values yields

η #s � 14ε1  2m1  2σ � 1, which amounts to just over two thirds of the actual value of ηs. This

difference is due to the lower degree of ordering in the liquid relative to the bilayer, where the

amphiphiles are stretched, aligned and positioned in a near-planar configuration, and to the

higher packing density in the bilayer made possible by this ordering. The effective friction

coefficient of a slab of t5 with the same thickness as the bilayer is readily shown to be given

by ξ # � ηb � hs [13, 20]. The resulting value of ξ # � 0 � 3ε1  2m1  2σ � 3, indicated in Fig. 2.7 by

an arrow, amounts to less than one tenth of the actual bilayer friction coefficient. Here again,

the increased ordering in the bilayer relative to the liquid must have caused the difference,

which is much more pronounced for ξ than for ηs. Interestingly, on the basis of experimental

data for the friction coefficient, Evans and Yeung and co-workers [13, 14] also arrived at a

mismatch by one order of magnitude.

We end with a brief comparison of our numerical results with experimental data. Whereas

the model amphiphile possesses only one relatively short tail, experiments have concentrated

on phosphatidylcholine PC lipids with two longer tails of typically 18 carbons. It is to be

expected, therefore, that the latter yield considerably higher surface viscosities and friction

coefficients than the model amphiphiles, even if friction and random forces had properly

been included in the model. Reported surface viscosities for lipid bilayers [13, 15, 19] are of

the order of 10 � 7 to 10 � 6 surface poise (1 sp is equivalent to 10 � 3 Pa m s), as compared to

the 8.5 ! 10 � 10 sp found by the perpendicular shear simulations. Experimental friction coef-

ficients are rare, with 1 ! 108 N s m � 3 reported by Evans and Yeung [13] and 4.5 ! 108 N s m � 3

by Raphael and Waugh [11]. Chizmadzhev et al. [20] assumed in their analysis that ηb �
ξ # hs � η #w � hs; from their value of ηb we arrive at 2 ! 109 N s m � 3 for hs � 4 nm. The parallel

shear simulations yield 1.4 ! 106 N s m � 3. In both cases, the simulation results are two to three

orders of magnitude lower than the experimental values. As already alluded to, this is a con-

sequence of using a simplified coarse grained model, which does not discredit the proposed

simulation method in any way.
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3
Thermal undulations of lipid

bilayers

relax by intermonolayer friction

at sub-micrometer length

scales

The time correlation functions of the thermal undulations of a lipid membrane

have been studied by molecular dynamics simulations of a coarse-grained bilayer

model. We observe a double-exponential decay, with relaxation rates in good

agreement with the theory by Seifert and Langer [Europhys. Lett. 23, 71 (1993)].

Intermonolayer friction resulting from local velocity differences between the two

monolayers is shown to be the dominant dissipative mechanism for fluctuations

with wave lengths below � 0 � 1µm. �
Biological membranes are amphiphilic bilayers composed of lipids interspersed with fatty

acids, sterols and proteins. They serve to isolate the contents of the cell from the outside

world and to separate compartments within the cell. Besides transmitting chemical stimuli

by means of their proteins,[2] they offer the possibility of transporting material from one

side to the other by simple diffusion,[3] through channels[3] or by budding and subsequent

pinching off of the bud.[4] Obviously they provide mechanical support to their contents.

The mechanical and thermodynamic properties of membranes have therefore been studied

intensively through the past few decades.[5, 6, 7, 8] From a theoretical point of view it is

attractive to attribute these properties to a mathematical surface, the neutral surface,[9] as for

example in the celebrated Helfrich free energy:[10]

F � �*) 2κH2  κ̄K  � k � 2 � � φ � φ0 � 1 � 2 + da � (3.1)

The integral is over the surface of the membrane, H is the local mean curvature, K the local� The work described in this chapter previously appeared in Physical Review Letters 96, 178302 (2006) [1].
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Gaussian curvature and φ the local density. κ and κ̄ are the bending rigidity and saddle-splay

modulus, respectively, k is the compressibility modulus, and φ0 is the equilibrium density. In

the sequel the Gaussian curvature plays no role and will be omitted.

In combination with the relevant hydrodynamic equations, the Helfrich free energy may

be used to study the dynamics of membranes at large length scales. [11, 12, 13, 14, 15, 16, 17]

In many cases of interest, however, small scale deformations of the membrane occur, which

force the two monolayers to slip along oneanother[18] with velocity difference ∆v, giving

rise to an intermonolayer friction force per unit area Fslip � b∆v, with friction coefficient b.

This happens for example in erythrocytes as they wriggle through narrow passageways,[5]

during the pulling of tethers by kinesine motor proteins,[19] in cleavage of cells during the

last stage of cell division,[3] and in the formation of vesicles from existing membranes by

budding.[4] Several experiments have been performed to measure the friction coefficient b.

Evans and Yeung[20] and Raphael and Waugh[21] reported on tether pulling experiments,

while Chizmadzhev et al.[22] induced slippage by pulling a bilayer through a toroidal fusion

pore. Typical values of the friction coefficients obtained this way are b � 108 � 109 Ns/m3

for a range of lipids bilayers.

The theory describing the dynamics of an undulating bilayer with slipping monolay-

ers was first discussed by Seifert and Langer.[23, 24] Independently, one year later, Evans

and Yeung[20, 25] published a similar theory for undulating vesicles, which has since been

extended.[26, 27] To the best of our knowledge, only two papers so far on measurements of

shape fluctuations have provided some, still inconclusive, support for these theories.[28, 29]

Previous simulations of the dynamics of bilayer fluctuations have not been analysed with the

appropriate equations.[30]

By ignoring peristaltic modes, i.e., by fixating the distance between the neutral surfaces

of the two monolayers to a value of 2d, the degrees of freedom of the bilayer reduce to three

fields. One is the position h � x 
 y � of the midsurface, i.e., the surface halfway the two mono-

layers. The other two fields are the two monolayer densities φ , � x 
 y � . It is convenient to

use densities which are projected on the midsurface,[7, 23, 24] ψ , � φ , � 1 - 2dH � , since

it is the difference of the velocities corresponding to these densities which determines the

intermonolayer friction. This can be understood by noticing that a uniform bending of the

bilayer should not result in any friction. Finally, we introduce the normalized density differ-
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ence ρ∆ � x 
 y � �.� ψ / � ψ �0� � φ0 and average density ρΣ � x 
 y � �.� ψ /1 ψ �2� � φ0 � 1, and notice

that fluctuations of the latter are decoupled from those of the other degrees of freedom.[23]

This leaves us with the coupled dynamics of two fields, h � x 
 y � and ρ ∆ � x 
 y � . After a Fourier

transformation of the appropriate force balances, Seifert and Langer arrived at[7, 23, 24]

∂
∂ t 34 hq

ρ∆
q

56 � 34 1 � 4ηq 0

0 q2 � 4b

56 34 κ̃q4 � kq2d� kq2d k

56 34 hq

ρ∆
q

56 
 (3.2)

where t is the time, κ̃ � κ  d2k, and η is the viscosity of the solvent surrounding the bilayer.

The vectors represent the conformation of the bilayer in Fourier space, with q being the

wave-vector of the Fourier components and q its length. Modes with different wave-vectors

are decoupled. The second matrix on the right hand side is the Hessian of the free energy

of the bilayer expressed in the complex Fourier components hq and ρ∆
q of the fields h � x 
 y �

and ρ∆ � x 
 y � . The first matrix is called the mobility matrix. The final solution follows after

diagonalization of the product of the two matrices.

We now invoke Onsager’s regression hypothesis,[31] in combination with the above the-

ory, to describe the dynamics of the fluctuations of a bilayer around its equilibrium state. The

height-height time correlation function then reads[7]� hq � t � h �q � 0 ��� � Ah
1e � γ1t  Ah

2e � γ2t 
 (3.3)

where the angular brackets denote a canonical average and the asterisk indicates a complex

conjugate. Ah
1 and Ah

2 are two q-dependent amplitudes.[7] The relaxation rates γ1 and γ2

are the smallest and the largest eigenvalue, respectively, of the product of the two matrices in

Eq. (3.2). Their dependence on the wavenumber q is shown in Fig. 3.1, using particular values

for the various parameters pertaining to our coarse-grained model, to be described below.

The curves exhibit an avoided crossing around a critical wavenumber qc � ηk � bκ̃, similar to

those found in phonon dispersion curves. Inspection of the corresponding eigenvectors[7, 23]

reveals that the slow mode has bending character at low wavenumbers and slipping character

at large wavenumbers, as indicated in the figure. The opposite holds true for the fast mode.

The bending part of the slow mode behaves like γ1 � κq3 � 4η and that of the fast mode like

γ2 � κ̃q3 � 4η . For the slipping branches one finds γ2 � kq2 � 4b at small wavenumbers and

γ1 � kκq2 � 4bκ̃ at high wavenumbers. In the limit of zero thickness, d � 0, the avoided

crossing disappears and the two bending parts merge into one line with γ � κq3 � 4η , also
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Figure 3.1: The slow γ1 and fast γ2 relaxation rates (solid lines) of an undulating bilayer

as functions of the wavenumber q, calculated using the parameters of the coarse-grained

model. The slipping branches scale as q2 and are damped by intermonolayer friction, the

bending branches scale as q3 and relax through viscous dissipation by the solvent. Dashed

and dotted lines denote extrapolations of the limiting regimes at low and high q; the vertical

distance between each set of parallel lines is log � κ̃ � κ � . The arrow indicates the cross-over

wave-number qc where the relaxation characters of the slow and fast modes are gradually

exchanged. Circles and squares mark the relaxation rates obtained by fitting the simulated

height correlation functions of Fig. 3.2

described by the older theories, [11, 12, 13, 14] while the slipping parts merge into one line

with γ � kq2 � 4b, not treated in the older theories.

Simulations[32, 33] were done using a simple coarse grained model,[34] in which the

amphiphiles are represented by short chains of one head particle and four tail particles, con-

nected by harmonic springs and a bending potential. The solvent consists of loose par-

ticles. Non-bonded interactions between particles are of the Lennard-Jones type, φLJ �
4ε � � r � σ �7� 6 ��� r � σ �7� 12 � , except for a purely repulsive potential φrep � ε � r � � 1 � 05σ � � � 9 mod-

elling the hydrophobic interactions. A Nosé-Hoover thermostat was used to maintain a tem-

perature of 1 � 35ε � kB. Indicative translations of simulation results to experimental values are
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Figure 3.2: Time correlation functions of the Fourier components of the height of a thermally

fluctuating bilayer (solid lines), for the three smallest wavenumbers commensurable with the

box dimension, q1 � 0 � 18σ � 1 (top), q2 � 0 � 25σ � 1 (middle, multiplied by 2.5) and q3 �
0 � 36σ � 1 (bottom, multiplied by 8). The dashed lines are double exponential fits, excluding

the transient part of the simulation data; the dotted straight lines show the contributions of

the slow modes to these fits.

obtained by using[34] ε � 2 kJ/mol, σ � 1 � 3 nm and the particle mass m � 36 a.u., which

imply a unit of time τ � 1 � 4 ps. This particular model is one of the best-studied coarse grained

models available, with previous simulations focusing on its bending rigidity,[35, 36, 37]

apparent[34] and intrinsic[37] compressibility, edge energy,[38] and the free energy profile

of pore formation.[39] It is the first model for which the surface viscosity and the intermono-

layer friction have been established, using non-equilibrium simulations.[40] As expected for

a simple coarse grained model with a single short tail, its dynamical properties turned out to

be some two orders of magnitude faster than the experimental data on amphiphiles with two

longer tails. In combination with its inherent simplicity, this makes the model particularly

appealing for exploratory studies like the current study on the importance of intermonolayer

friction on the thermal undulations of a bilayer. Figure 3.1 was calculated using k � 11εσ � 2,

κ � 7 � 5ε , b � 3 � 7ε1  2m1  2σ � 3, η � 1 � 0ε1  2m1  2σ � 2 and an estimated d � t � 4 for a bilayer
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Figure 3.3: The relaxation rates of the coarse grained model before (grey) and after (black)

a 100-fold increase of the intermonolayer friction, to bring this parameter on a par with

experimental values. Changing b does not affect the relaxation rates of the bending branches,

whose limits are indicated by dashed lines. The rates of the slipping branches, however, are

reduced by a factor of 100, and the cross-over wavenumber (arrows) is reduced accordingly.

Atomistic and coarse grained simulations live in the top-right corner of the plot, as these

systems typically contain 103 lipids, corresponding to q � 0 � 1σ � 1, with simulation times

usually of the order of 104τ .

of thickness t � 7σ .

The simulated system comprised a 1152 amphiphile bilayer and 10,800 solvent particles

at a number density of 2 � 3σ 3 in a periodic simulation box. The area of the square xy ground

plane of the box, oriented parallel to the bilayer, was adjusted till the average pressures par-

allel and perpendicular to the bilayer were equal, establishing a tension-less state.

In Fig. 3.2 we present the calculated time dependent height autocorrelation functions for

the three longest wavelengths commensurable with the dimensions of the simulation box.

For each of these wave numbers, q1 � 0 � 18σ � 1, q2 � 0 � 25σ � 1 and q3 � 0 � 36σ � 1, there are

two allowed wave vectors, which were both used to produce the averaged curves shown in

the figure. The dashed lines are the best representations of the data using two exponentially
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decaying terms. As usual, because of time reversal symmetry, the early parts of the curves

do not follow the macroscopic theory[31] and must be deleted from the fitting procedure. At

the lowest wave number two regimes can clearly be discerned, while with increasing wave

number the first regime becomes too short to be measured accurately. The second, slow

regime in all cases extends over large enough time intervals to allow a precise measurement

of the corresponding characteristic times γ � 1
1 . The results are represented in Fig. 3.1 by

circles, and agree perfectly well with the rates predicted by the theory of Seifert and Langer.

Also shown in Fig. 3.1 are the calculated fast relaxation rates γ2. Given the difficulties with

determining their values, they agree fairly well with the theoretical predictions. These results

provide strong evidence for the validity of the theory by Seifert and Langer. [23, 24]

As is clear from Fig. 3.1, the slowest relaxations at the wavenumbers studied in this paper

have mainly slipping character. The main shortcoming of the model used in our simulations

is a value of b which is smaller than typical experimental values by a factor of about 100. A

drawing of the dispersion curves with this larger value of b, and otherwise the same parame-

ters as used before, is depicted in Fig. 3.3. The bending parts of the plot remain unchanged,

while the slipping parts move downwards along the vertical axis since in the latter regimes

γ1 8 2 ∝ b � 1. As a result, the critical wavenumber moves to lower values as well. Using realistic

values for all membrane parameters we obtain qc " 0 � 01 nm � 1, indicating that the relaxation

of membrane fluctuations at length scales below � 0 � 1µm is dominated by intermonolayer

friction. Note that many experiments[15, 41, 42] probe wavenumbers at larger length scales,

and therefore sample undulations which mainly relax through energy dissipation by the vis-

cous solvent.

We draw one more conclusion from the above discussion, concerning particle based sim-

ulations of bilayers. In simulations of systems with realistic values for the intermonolayer

friction coefficient, the longest relaxation time will often be too long to be sampled suffi-

ciently well, even if one chooses small systems to exploit their relatively small relaxation

times. Since the usual way to measure the bending rigidity[30, 35, 36, 43] assumes that all

fluctuations are fully sampled, such calculations, when applied to atomistic simulations, must

be met with care.

The main results of this paper are a confirmation of the theory by Seifert and Langer

describing the relaxation dynamics of undulations in lipid bilayers, and the conclusion, illus-
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trated by the presented molecular dynamics simulations, that at length scales below � 0 � 1µm

the relaxations are dominated by intermonolayer friction.
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4

Molecular dynamics

simulations of

thermal undulations of lipid

bilayers

in the tension-less state and

under stress

The relaxation processes of height undulations and density fluctuations in a

membrane have been studied by molecular dynamics simulations of a coarse-

grained amphiphilic bilayer model. We observe a double exponential decay in

their time correlations, with relaxation rates in good quantitative agreement with

the theory by Seifert and Langer [Europhys. Lett. 23, 71 (1993)]. Intermono-

layer friction due to slippage between the two monolayers is shown to be the

dominant dissipative mechanism at the high wavenumbers, q 9 10µm � 1, typi-

cally encountered in computer simulations. We briefly discuss the ramifications

of the slow undulatory relaxation process for the calculation of bending rigidi-

ties from the static undulation structure factors. The relaxation rates are sensitive

to the surface tension, and at high elongations an oscillatory contribution is ob-

served in the time correlation of the undulations.

4.1 Introduction

Membranes are of vital importance to biological cells, by providing mechanical support,

hosting proteins, compartimentalizing the cell and acting as semipermeable barriers between

the cell and its environment.[1, 2] This feat is achieved by lipids, i.e., molecules with a

hydrophilic head group and one or two hydrophobic tails, which self-assemble into bilayered

membranes when dissolved in an aqueous liquid. An interplay of non-covalent interactions,

between the amphiphilic lipids and with the solvent, makes these bilayers stable, yet flexible
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and dynamical. The twinned nature of a bilayer is important if biological reasons require

the inside of the membrane to differ from its outside, which seems to be the case in many

membranes.

The mechanical and thermodynamical properties of membranes are well described by

the Helfrich theory,[3, 4] which regards both bilayers and monolayers as single smoothly

undulating surfaces with free energies consisting of bending and elastic contributions. The

motion of a bilayer under these internal forces is damped through energy dissipation by shear

forces, within the bilayer but predominately in the solvent. Combining the Helfrich theory for

the membrane with the Stokes approximation for the low Reynolds number hydrodynamical

flow of the solvent, an excited undulation with wavenumber q in a tension-less membrane

is found to decay exponentially with a relaxation rate Γ � κq3 � 4η , where κ is the bending

rigidity of the membrane and η the viscosity of the solvent. [5, 6, 7, 8] Following Onsager’s

regression hypothesis,[9] the same rate also governs the Brownian or thermal undulations

of a membrane, which were already observed several centuries ago as the ‘flickering’ of a

red blood cell under an optical microscope.[6] Numerous experiments have confirmed this

scaling law for Γ, including video microscopy of individual giant unilamellar vesicles, [10,

11] scattering experiments on highly diluted lamellar and sponge phases, [12, 13] and spin

relaxation measurements of vesicle solutions.[14]

A decade ago, Evans et al.[15] emphasised the existence of a hitherto ‘hidden’ dissipative

process, resulting from friction forces between the two leaflets of a bilayer as they slip past

one another. This process is of importance in all shape deformations of bilayers, but espe-

cially so for rapid changes which allow the density distributions of the leaflets little time to

accommodate. Slippage is readily induced in experiments by forcing the membrane lipids to

flow through a region of high local curvature, e.g., by pulling a tether from a vesicle,[15, 16]

by the spontaneous retraction of this tether,[17] or by using a fusion pore to connect two bilay-

ers under distinct tensions.[18] In computer simulations, slippage has been brought about by

exposing a bilayer and the surrounding solvent to a parallel shear flow.[19] It is to be expected

that friction also plays a role in biological processes, like the conformational changes of ery-

throcytes as they travel around the body,[1] the cleavage of an animal cell during the later

stages of cell division,[2] and the budding of membranes to form vesicles.[20] Typical values

for the intermonolayer friction coefficient b, defined as the proportionality constant between
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the slip velocity and the friction force per unit area, are of the order of � 1 � 10 � ! 108 Ns/m3.

[16, 18, 21, 22]

Interestingly, theoretical considerations have shown that the effects of intermonolayer

friction are also relevant at the small slip velocities occurring during the thermal undulations

of a bilayer. Seifert and Langer[23, 24] derived the equations of motion for a planar bilayer,

explicitly treating the bilayer as two coupled monolayers, yielding two exponentially decay-

ing relaxation processes with γ1 and γ2 as the slow and fast relaxation rates, respectively.

For low wave numbers, the aforementioned solvent-dominated mechanism was recovered as

the slow relaxation process, γ1 � Γ ∝ q3, with the fast relaxation scaling as γ2 ∝ q2. In this

paper, the focus will be on the high and intermediate wave number regime, as this covers

the length scales attainable in computer simulations of atomistic and coarse grained bilayer

models.[25] The theory of Seifert and Langer predicts for this case that the slow relaxation

process results from energy dissipation by intermonolayer friction, γ1 ∝ q2, while the fast rate

now scales as γ2 ∝ q3 – a more detailed discussion of these dissipative mechanisms will be

given in the theory section. Experiments supporting this theory are sparse, however. Spin-

echo measurements on a dense lamellar stack of bilayers, interspersed by water layers of� 10 Å thickness, seem to favour the predicted quadratic dispersion relation at high q val-

ues, although the confirmation of theory is not clear-cut in this particular set-up.[23, 26, 27]

Other high-wavenumber studies, like atomistic molecular dynamics (MD) simulations[28]

and neutron spin-echo experiments on semi-dilute lamellar phases,[29] have been fitted with

the conventional relaxation rate Γ ∝ q3, which according to the current theory should hold

true only for the low q, solvent-dominated relaxation process.

Evans and Yeung[16, 30] derived equations of motion for axially symmetric bilayer con-

figurations, in order to study both the pulling of a tether from a vesicle and the thermal

undulations of a vesicle. A related theory specifically aimed at the latter case has been put

forward by Bivas et al.[31]. Like for planar bilayers, a double exponential decay is predicted,

where again for large wave numbers the slow relaxation is dominated by intermonolayer fric-

tion. The video microscopy experiments by Pott and Méléard[22] provided the first (and

to the best of our knowledge also the only) confirmation of the existence of two relaxation

processes in vesicles. A quantitative analyses, however, yielded intermonolayer friction co-

efficients exceeding previous measurements by one or two orders of magnitude, depending
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on the theoretical model used. Miao et al.[32] argued that this deviation might be diminished

by a re-interpretation of the elastic modulus, whose apparent value decreases drastically with

increasing length scales.[33, 34, 35, 36] An oscillatory component in the experimental relax-

ation data, clearly visible against the small amplitude of the slow decay process, has not been

explained yet.

The experimental evidence for current theories on the thermal motion of a tensionless

membrane, and the alleged prominent role played herein by the phenomenological friction

coefficient, is therefore indicative but not conclusive. In this paper, we use molecular dy-

namics simulations of a planar coarse grained bilayer to validate the theory. In Section 4.2

we recapitulate the main points of the theory, while the bilayer model and the applied anal-

ysis routines are briefly introduced and motivated in Section 6.3. Our simulation results are

presented in Section 4.4, followed by an extensive discussion and summary in Section 5.6.

4.2 Theory

The equations of motion for a bilayer with friction forces between its two monolayers were

first derived in the early 1990s by Seifert and Langer[23, 24] for a near-planar membrane and

independently by Evans and Yeung[16, 30] for an axially symmetric configuration. In this

section we present a concise overview of the major steps in the first of these, to provide the

necessary background information and to highlight several points which will turn out to be of

importance in the numerical analysis, culminating in two autocorrelation functions that can

be compared against our simulation results.

Conforming to Seifert and Langer, we write the free energy F of a bilayer as a sum of

two terms, expressing the contributions of each of the two monolayers. The free energy of

each monolayer is next written as an integral of the Helfrich free energy densities f , along

the corresponding so-called neutral surfaces S , ,

F � � f / � h / 
 φ / � dS /  � f � � h � 
 φ � � dS � � (4.1)

Here h , is the height above the ground plane of the upper (+) and lower (-) monolayer, and

φ , is the corresponding surface number density of amphiphiles. It is our aim in this section,

again in conformity with Seifert and Langer, to rewrite the above free energy as an integral

52



4. MOLECULAR DYNAMICS SIMULATIONS OF THERMAL UNDULATIONS OF LIPID BILAYERS
IN THE TENSION-LESS STATE AND UNDER STRESS

over a single surface S, for which we choose the midplane of the bilayer, i.e., the surface with

height h �:� h /  h � � � 2:

F � � f � h 
 ψ / 
 ψ � � dS 
 (4.2)

where ψ , are projected densities defined below. The reason for doing this is two-fold. First,

on bending bilayers, not only will both monolayers bend, but besides this one monolayer

will expand while the other gets compressed. Yet we want to attribute the total free energy

cost of this process to a bending term in the free energy of the bilayer. Secondly, because

intermonolayer friction is associated with motion at the midsurface, it will be convenient to

have available densities ψ , at this surface.

4.2.1 Statics

In the Helfrich model[3, 4] the free energy surface density f of a curved monolayer is

expressed as the sum of a bending term and a density term, which are decoupled by definition

if the curvature H and the density φ are defined relative to the so-called neutral surface of the

monolayer. In the case of a bilayer, this applies to each of the two monolayers independently:

f , � κm

2 � 2H , � 2  km

2
% φ ,

φ0 � 1 & 2 � (4.3)

The superscripts + and � refer to the upper and lower monolayer, respectively, of a symmetric

bilayer membrane with zero spontaneous curvature. The bending rigidity κm and elastic

modulus km are material properties of one monolayer, as is the equilibrium density φ0. Using

the Monge representation[4] for the heights h , � x � of the nearly flat neutral surfaces, with

x �;� x 
 y � denoting the two Cartesian directions parallel to the bilayer, the mean curvatures of

the monolayers are readily calculated as H , � 1
2 ∇2

xh , . The saddle-splay free energy resulting

from the Gaussian curvature has been ignored in Eq. (6.1) because this term is constant by the

Gauss-Bonnett theorem. The free energy of the bilayer is obtained by integrating f / and f �
over the corresponding neutral surfaces and adding the results, see Eq. (6.4). Instead of using

two neutral surfaces, it is much more convenient to refer all quantities to just one surface, for

which the midsurface of the bilayer h � x � , with mean curvature H � 1
2 ∇2

xh, is conveniently

chosen. If the two neutral surfaces are at a fixed distance d from the midsurface, measured

parallel to the normal, then H , � H � 1 � 2Hd � to first order[4] in d. By summing the bending
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free energies of the two monolayers, we find that the bending free energy of the bilayer

equals κm � 2H � 2 to lowest order in H, and so has a bilayer bending rigidity equal to twice the

monolayer value, κ � 2κm. Next, we define monolayer densities ψ , � x � also relative to the

midsurface. Area changes incurred during projections of particle positions onto the midplane,

due to the curvatures of the involved surfaces, are accounted for by[4] ψ , � φ , � 1 - 2Hd � .
Since we are interested in fluctuations, it is convenient to introduce ρ ∆ �<� ψ / � ψ �0� � 2φ0

and ρΣ ��� ψ /= ψ �2� � 2φ0 � 1. The elastic energy density of the bilayer then reads

felas � f /elas  f �elas " km � ρΣ � 2  km � ρ∆ � 2  4kmρ∆Hd  km4d2H2 (4.4)

to lowest order in the three fields. Since intermonolayer frictions are induced by fluctuations

of ρ∆, and coupling terms between ρΣ and ρ∆ are absent in the free energy, the dynamics of

ρΣ is decoupled from that of ρ∆ and H.

For nearly flat bilayers the integration of f � f /> f � over the midsurface is readily

achieved by using Fourier transformations along the xy plane. For the undulations we write

h � x � � ∑q hq exp � iq ! x � , where for real h � x � the complex coefficients are related by hq � h � � q,

with the asterisk denoting complex conjugation. Similar expressions apply to the densities.

These transformations turn the bilayer free energy surface density into a summation over

independent modes, f � ∑q fq. For a single mode along the x axis with wave number q, on

which we shall henceforth concentrate for notational convenience, the free energy takes the

form

fq � 1
2
3??4 hq

ρ∆
q

ρΣ
q

5A@@6 T 3??4 κ̃q4 � 2kmq2d 0� 2kmq2d 2km 0

0 0 2km

5A@@6 3??4 hq

ρ∆
q

ρΣ
q

5A@@6 � 
 (4.5)

where κ̃ � κ  2kmd2 is an effective bending rigidity.

The structure of the energy matrix Eq in the above expression is a consequence of the cho-

sen variables. In terms of the normalised densities relative to the monolayer neutral planes,

π , � φ ,B� φ0 � 1 or the corresponding ∆ρφ and πΣ, the energy matrix would have been di-

agonal. Although these fields are advantageous when describing the thermodynamics of the

bilayer, they are less appealing in a study on bilayer dynamics. Of course, both choices agree

on free energy changes going with conformational fluctuations, be it with different interpre-

tations of the bending and elastic contributions. If, for example, an initially flat bilayer is
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uniformly bent into a cylinder with curvature radius R � 1 � � 2H � , the unprojected densities

become π , � � d � R and acquire an elastic free energy of 2kmd2 � 2H � 2 per unit of area, on

top of the bending energy of 2κm � 2H � 2. The projected density fluctuations ρ∆ and ρΣ, on

the other hand, remain unchanged while the bending-induced elastic energies are implicitly

accounted for by the augmented bending rigidity κ̃.

We conclude this section with three minor points. (i) As already noticed above, the bend-

ing and density terms in Eq. (4.5) are not fully decoupled: the presence of the two off-

diagonal elements in Eq shows that a mixed contribution remains which accounts for elastic

energy contributions in the bending of an asymmetric, ρ ∆ �� 0, bilayer. (ii) The structure

factors of a tensionless bilayer are known to scale as ��C hq C 2 � � kBT � κq4, which has amply

been confirmed by simulations. [28, 37, 38, 39, 40] By applying the equipartition theorem to

Eq. (4.5),D 3??4 hq

ρ∆
q

ρΣ
q

5A@@6 T 3??4 hq

ρ∆
q

ρΣ
q

5A@@6 �FE � kBT 3??4 1 � κq4 d � κq2 0

d � κq2 κ̃ � 2kmκ 0

0 0 1 � 2km

5A@@6 
 (4.6)

one finds that this scaling law still holds. Note that the right hand sides of Eqs. (4.5) and

(4.6) apply to a membrane of unit area; for a bilayer of total area A the free energy gains

a factor A and the expectation values acquire an extra factor of A � 1. (iii) Had we endowed

the monolayers with a spontaneous curvature, c ,0 , the bending free energies would have read

f ,bend �	� κm � 2 � � 2H , � c ,0 � 2, where c ,0 � � c0 due to the opposite orientations of the two

identical monolayers. The bilayer then still has no spontaneous curvature, while its bend-

ing rigidity would have been κ � 2κm � 1 � 2c0d � . The remainder of the above analysis is

unchanged, and offers no opportunity of determining κm and c0 independently.

4.2.2 Dynamics

Seifert and Langer[23, 24] and Evans and Yeung[16] solved the equations of motion of a bi-

layer using the Stokes approximation, i.e., by neglecting inertial forces and balancing driving

forces with friction forces.
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For the solvent at either side of the bilayer, the Stokes or creeping flow conditions read

η∇2
xu , � ∇x p , 
 (4.7)

∇x ! u , � 0 
 (4.8)

with u , � x � and p , � x � being the flow and pressure fields at x �G� x 
 y 
 z � , respectively, and η

the viscosity of the solvent. At the bilayer, which for convenience is treated as a flat boundary

at z � 0, the two flow fields are matched by a continuous normal velocity, which obviously

equals the normal velocity of the bilayer, u ,z � x 
 0 � � ḣ � x � . However, if the two monolayers

are allowed to slip, the tangental velocities are discontinuous. Assuming stick boundary

conditions at the solvent-bilayer interfaces, which was shown to be a realistic approximation

in our earlier simulations of bilayers under a parallel shear flow, [19] one arrives at u , � x 
 0 � �
v , � x � , with v , the lateral velocities of the two monolayers. The resulting flow field in the

solvent can be expressed as a sum of waves which are oscillatory along the bilayer plane and

exponentially decaying with the normal distance to the bilayer. [23] The stress tensors T , in

the liquid follow, as usual, as the sum of the hydrostatic pressure and shear terms.

The equations of motion of the bilayer read[23]

δ f
δh � T /zz � T �zz 
 (4.9)

∇x % δ f
δρ∆ & � ηs∇2

x H v / � v �JI  H T /  T �2I ! êz � 2b H v / � v �JI 
 (4.10)

∂ρ∆

∂ t " � 1
2

∇x ! H v / � v �2I � (4.11)

These equations, together with those of the liquid phases, form a complete set. In particular,

no continuity equation for ρΣ is needed, since ρΣ does not occur in any of the above equations,

nor in the free energy derivatives δ f � δh and δ f � δρ∆, see Eq. (4.4).

The first of the above equations is obtained by balancing all normal forces, i.e., the

forces within the bilayer and the difference between the liquid stresses at either side of the

bilayer.[23] The left hand side denotes the change of surface free energy density upon a lo-

cally homogeneous bending of the surface. Expressing the free energy density in terms of the

projected densities ρ∆ and ρΣ, which remain constant during a homogeneous bending, this

change can simply be calculated as the functional derivative δ f � δh. After a Fourier transfor-

mation, the derivative ∂ f � ∂h �q is readily evaluated from Eq. (4.5), while introduction of the
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solvent flow field reduces the two terms on the right hand side to T ,zz � - 2ηqḣq. One thus

arrives at the equation of motion for hq.

Equation (4.10) is obtained by subtracting the tangental force balances of the upper and

lower monolayers.[23] The first term on the right hand side describes viscous forces within

the monolayers, slowing down the flow fields v , of the amphiphiles, with ηs the surface shear

viscosity.[19, 41]. In the second term on the right hand side one recognises shear forces acting

on each of the monolayers, exerted by the liquid above and below the membrane, again under

the assumption that stick boundary conditions apply. As discussed by Evans and Yeung,[16]

for thermally undulating bilayers at wave lengths exceeding the bilayer thickness, these first

two force contributions on the right hand side are negligible compared to the third term and

they are henceforth ignored. The last term on the right hand side gives a phenomenological

expression for the shear force between two sliding monolayers, with b denoting the friction

parameter. The left hand side describes lateral forces within the monolayer resulting from

gradients in the surface pressure, which in turn are caused by variations in the densities.

The last equation, Eq. (4.11), is the difference between the mass conservation equations

of the two monolayers. In principle the density difference can also relax by ‘flip-flops’,[16]

the exchanging of amphiphiles between the two monolayers, but such events are rare in the

current simulations. Inserting the Fourier transform of Eq. (4.11) into the right hand side of

the Fourier transform of Eq. (4.10), one obtains the equation of motion for ρ ∆
q .

Combining the results of the above steps, Seifert and Langer[23, 24] arrived at a coupled

set of equations of motion for the height and the projected density difference,

∂
∂ t 34 hq

ρ∆
q

56 ��� 34 κ̃q3 � 4η � kmqd � 2η� kmq4d � 2b kmq2 � 2b

56 34 hq

ρ∆
q

56 � � Mq 34 hq

ρ∆
q

56 � (4.12)

Modes with different wave vectors evolve independently. The two relaxation rates γ1 8 2 of

this coupled set, where γ1 K γ2 for all q, are readily obtained by solving the characteristic

equation of the matrix Mq. Figure 4.1 shows these eigenvalues as functions of q, using the

parameters of the bilayer model simulated here. By Taylor expanding the exact expressions,

one recovers the two limiting regimes of the plot,

γ1 � q � "MLN O κ
4η q3 q ( qc

kmκ
2bκ̃ q2 q P qc

γ2 � q � "QLN O km
2b q2 q ( qc

κ̃
4η q3 q P qc


 (4.13)

57



4. MOLECULAR DYNAMICS SIMULATIONS OF THERMAL UNDULATIONS OF LIPID BILAYERS
IN THE TENSION-LESS STATE AND UNDER STRESS

0.01 0.1 1
q   /   σ−1

10-6

10-4

10-2

100

102

γ 1,
2   

/  
 τ

-1

γ1

γ2

Figure 4.1: The two relaxation rates of a bilayer membrane as functions of the wave number.

Solid lines represent the theory of Seifert and Langer, using the static and dynamic properties

of the current CG model, dashed and dotted lines indicate the limiting regimes of Eq. (4.13),

and the arrow marks the cross-over wave number qc. Circles and squares denote the relaxation

rates obtained by fitting the time correlations of the simulated undulations with a double-

exponential function, see Fig. 4.5. An enlargement of the simulated slow relaxation rates γ1

is presented in Fig. 4.8.

where qc � 2ηkm � bκ̃ is the cross-over wave number. The eigenvectors V1 8 2 � q � correspond-

ing to these eigenvalues reveal the physical characters of the two relaxation processes. At low

q the slow first mode describes bending relaxations slowed down by viscous dissipation in the

liquid, in agreement with the classical results for a monolayer membrane,[5, 6] i.e. γ1 � Γ,

while the fast second mode represents diffusional relaxation of density difference variations,

damped by friction between the monolayers. In the neighbourhood of qc the two eigenvectors

of Mq gradually exchange their characters. For the high q regime in which we are interested

here, the slow first mode describes a density relaxation process damped by intermonolayer

friction, and the fast second mode a viscously damped bending relaxation. Note that the

eigenvalues of Eq. (4.13) are not simply exchanged upon crossing qc, but acquire a factor of

κ̃ � κ or its inverse. For q ( qc the density equilibrates much faster than the undulations and

58



4. MOLECULAR DYNAMICS SIMULATIONS OF THERMAL UNDULATIONS OF LIPID BILAYERS
IN THE TENSION-LESS STATE AND UNDER STRESS

κ acts as the bending rigidity, while at q P qc the density relaxes slower than the undulations

and κ̃ becomes the effective bending rigidity. Because of computational limits on the max-

imum accessible bilayer dimensions, and hence the lowest attainable values of q, computer

simulations of bilayer models with molecular details necessarily live in the latter regime, at

best approaching qc from above.[25]

Evans and Yeung[16] derived, in their study of axially symmetric vesicles and tethers,

equations of motion which are essentially identical to the above expressions. Instead of den-

sity fields, these authors used dilation fields, α , � a ,R� a0 � 1 with a , the area per molecule

and a0 its equilibrium value. The focus on curved, rather than on nearly flat surfaces, intro-

duces a number of additional higher order curvature contributions in the normal force balance.

By using the approximation α / � α � " � 2∆ρφ for small α , , and keeping only lowest order

terms in h and ρ∆, one recovers the preceding equations of motion.

Having established the macroscopic equations of motion of the bilayer, the Onsager re-

gression hypothesis[9] is finally invoked to describe the autocorrelations of thermal fluctua-

tions around equilibrium, [27]

� hq � t � h �q � 0 ��� � � hqh �q �BS Ah
1e � γ1t  Ah

2e � γ2t T 
 (4.14)� ρ∆
q � t � ρ∆ �q � 0 ��� � � ρ∆

q ρ∆ �q � ) Aρ
1 e � γ1t  Aρ

2 e � γ2t + � (4.15)

The weight factors Ah
1 through Aρ

2 are compiled by combining E � 1
q with the matrix Vq of

eigenvectors of Mq,

Aα
i � 1� E � 1 � αα

Vαi ∑
β
� E � 1 � αβVβ i 
 (4.16)

where U α 
 β VXW�U h 
 ρ∆ V denote the components of the vectors and matrices, and i WYU 1 
 2 V
an ordinal number; the q dependence has been dropped here for convenience. In Fig. 4.2 the

four amplitudes are plotted against wave number for the bilayer model studied here, showing

that the first exponential, with the largest relaxation time, has the largest amplitude. The short

relaxation time and relatively small amplitude of the second exponential will complicate the

detection of this mode in the simulations.
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Figure 4.2: The amplitudes A of the contributions of the slow (1, top) and fast (2, bottom)

relaxation processes to the relaxation of the height (h, solid) and projected density difference

(ρ∆, dotted) time correlations, as calculated using Eq. (4.16). Circles and squares denote

amplitudes A1 8 2
h obtained by fitting the auto correlations of the simulated undulations with a

double-exponential function, see Fig. 4.5. The cross-over wavenumber qc is marked with an

arrow.
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4.3 Simulation details

The membrane and solvent are simulated [42, 43] using a coarse-grained model introduced

by Goetz and Lipowsky.[44] An amphiphile is represented as a chain of one head (h) and

four tail (t) particles, the solvent as loose water (w) particles. The non-bonded interactions

are of the Lennard-Jones type, ΦLJ � 4ε � � r � σ �7� 12 �Z� r � σ ��� 6 � , except for the repulsive hy-

drophobic interaction, Φrep � ε � r � 1 � 05σ �7� 9, between tail and water or head particles. All

non-bonded interactions are implemented in a shifted-force fashion, hence the energy and

force terminate smoothly at the cut-off distance of 2 � 5σ . Within the amphiphiles, the par-

ticles are held together by bond interactions Φbond � l � � 5000εσ � 2 � l � σ � 2 while a bending

potential straightens the molecule, Φangle � φ � � 2ε � 1 � cos � φ � � , with no dihedral potential.

All particles have the same mass m, and their number density is fixed at 2
3 σ � 3. The equations

of motion are integrated in DL POLY[45] using Verlet’s leap-frog algorithm with a time step

of τ � 500, where τ � � mσ 2 � ε is the unit of time. A Nosé-Hoover thermostat with a relax-

ation time of 0 � 4τ is employed to maintain a temperature T � 1 � 35ε � kB. For comparison

with experimental data, Goetz and Lipowsky[44] identified the tail and water particles with

a (CH2)3 unit and two water molecules, respectively, yielding ε � 2 kJ/mol, σ � 1 � 3 nm and

m � 36 a.u. and hence T � 325 K. A series of simulations with this simple CG model have

revealed that its area per molecule, elastic modulus, bending rigidity [34, 37, 38, 44] and

edge energy[46, 47] lie within the range covered by experimental data and other simulation

studies.

It should be emphasized, however, that this computationally attractive amphiphilic model,

with its single short tail, was not designed to accurately represent any particular amphiphile,

nor was any effort made to tune the force field parameters to the dynamics of a bilayer. Con-

sequently, it turns out that the time evolution of this model bilayer is considerably quicker

than that of experimental bilayers, which are usually comprised of amphiphiles with two

long tails. In a previous study[19] with this model we obtained for a quiescent bilayer

an in-plane amphiphilic diffusion coefficient of D � 1 � 8σ 2 � τ or 1.4 ! 10 � 5 cm2/s, as com-

pared to typical experimental values[48, 49] of � 1 � 25 � ! 10 � 8 cm2/s. Simulations of bilay-

ers under perpendicular and parallel shear flows[19] yielded, respectively, a surface viscos-

ity of ηs � 20ε1  2m1  2σ � 1 or 8.5 ! 10 � 13 Pa m s and an intermonolayer friction coefficient of

b � 3 � 7ε1  2m1  2σ � 3 or 1.4 ! 106 Ns/m3. The converted values show that the dynamics of the
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coarse grained model is two to three orders of magnitude faster than that of experimental

bilayers, for which ηs �[� 1 � 10 � ! 10 � 10 Pa m s and b �[� 1 � 10 � ! 108 Ns/m3 are typical.

[16, 18, 21, 22, 41, 50] The viscosity of the solvent, η � 1 � 0ε 1  2m1  2σ � 2 or 1.3 ! 10 � 4 Pa s,

is about a quarter of that of water at this temperature. Of course, the accelerated dynamics

does not in any way alter the equations of motion of the bilayer, whose validity we want to

put to the test here. From a simulations point of view, a fast model with a low b is actually

computationally attractive as it makes it easier to achieve a total run length that well exceeds

the slowest relaxation time γ � 1
1 ∝ b. Introducing the model parameters into Eq. (4.13), we

find that the smallest wave number commensurate with the box dimensions, q " 0 � 18σ � 1,

is more than double the cross-over wavenumber qc � 0 � 07σ � 1. The relaxation times at this

wavenumber, which are the slowest relaxation times of the bilayer, are then estimated at

γ � 1
1 " 230τ and γ � 1

2 " 17τ , and lie within the capabilities of current simulations.

The simulated bilayer counts N � 1152 amphiphiles and lies parallel to the square ground

plane of the periodic box with sides L � . Surrounding the bilayer are 10 800 solvent particles,

making the box height L � sufficiently large for the pressure tensor to become isotropic near

the middle of the solvent layer.[44] Because Eq. (6.1) is based on the assumption that the

monolayer densities are free to relax to their equilibrium value, � φ , � � φ0, the bilayer must

be prepared in a tension-less state. We therefore varied the box dimensions, at constant total

volume, to nullify the surface tension τs � L � � p � � p � � , with p � and p � the pressures on the

box faces perpendicular and parallel to the bilayer respectively. A calculation of the structure

factors, to be discussed below, independently confirms that the bilayer is indeed tension-less

for L � � 34 � 9σ . In order to test for system size dependencies, a limited number of simulations

were ran with a 2048 amphiphile tension-less bilayer surrounded by 19 200 solvent particles.

The positions xi ��� xi 
 zi � of the Na amphiphilic particles in the simulated bilayer do not

constitute a smooth bilayer plane h � x � , nor smooth density distributions, and some manipula-

tions are required to extract the appropriate Fourier coefficients from these coordinates. One

route is provided by a direct Fourier transformation of the particle coordinates,[38]

hq � 1
Na

Na

∑
i \ 1

zie � q ] xi � (4.17)

This approach can only be applied with confidence when the particles are distributed evenly

along the groundplane, a condition that is met here as the undulations and the density fluc-
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tuations are relatively minor for a small tension-less patch of bilayer. The corresponding

expression for the monolayer densities reads

φ ,q � 1
L2� Nâ

∑
i \ 1

e � q ] xi � (4.18)

Note that this expression, being based on the approximate bilayer area L2� , neglects variations

in the local surface area resulting from the undulations of the membrane. The curvature cor-

rections required for the subsequent conversion into ψ ,q are not readily implemented either.

Although both omitted contributions to ψ ,q are expected to be relatively small, as the total

curved surface area of the bilayer exceeds the ground plane area only by a modest 2.5% in our

simulations,[34] their neglect in a density difference calculation has far greater consequences.

We return to the merits and demerits of Eq. (4.18) in Section 4.4.2.

To include the aforementioned small but vital contributions in the Fourier transformations,

we divided the xy-plane into M _ M square grid cells, identifiable by their integer coordinates

m �`� mx 
 my � . The height hm of the bilayer in the mth cell was calculated as the average z

coordinate of all amphiphilic particles in that cell, and a straightforward Fourier transforma-

tion yielded hq. The monolayer densities φ ,m were obtained by dividing the counted number

of particles per cell by the monolayer area per cell a ,m. Because the areas that follow from

triangulation of the heights hm are out of phase with the cell boundaries used in the particle

counts, we made use of an auxiliary set of heights h #m calculated on a grid that was shifted

relative to the primary grid by half a cell size in the x and y directions. In order to arrive

at ψ ,m , several steps were made. The equilibrium monolayer density φ0 was obtained as the

total number of amphiphilic particles divided by the averaged sum of all areas a /m and a �m.

Next, the heights hm were analysed by a 9-points numerical differentiation scheme[51] to

establish the mean curvature Hm per cell. The projection of the densities furthermore require

the distance d between the midsurface of the bilayer and the neutral surfaces of the monolay-

ers. Since there is no readily available technique for establishing d, we assumed this distance

to be equal to half the monolayer thickness, i.e., a quarter of the bilayer thickness. Using

the average cross-membrane head-to-head distance as a measure for the bilayer thickness,

we arrive at d � 1 � 75σ . Finally, the grid of projected densities is Fourier transformed and

analysed. Of course, periodic boundary conditions were used throughout these calculations.

The assignment of the amphiphiles to the two monolayers was redetermined every timestep,
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Figure 4.3: Structure factors of the projected sum density fluctuation ρ Σ as a function of

the wave number, calculated by subdividing the ground plane of the simulations box into

M2 � 49 (circles) or 100 (pluses) grid cells.

to correct for the rare exchanges of amphiphiles between the layers, by using a clustering

routine[42] based on the distances between the head particles.

4.4 Results

4.4.1 Statics

The main objectives in this subsection are to establish a proper grid size for the Fourier

transformations and to assess the impact of the grid procedure, where possible by comparison

against previous off-lattice calculations. We also determine the density compressibility of the

monolayers.

While smaller grid cells (i.e., larger M) allow one to probe smaller length scales, the

concomitant reduction in the number of particles per cell increases the impact of statistical

noise on the data. Figure 4.3 shows the sum density structure factors �7C ρ Σ
q C 2 � for M � 7

and M � 10, with on average 59 or 29 amphiphilic particles per cell, respectively. In the
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low wavenumber regime that we are interested in here, the two data sets are levelling off at

about the same value, in agreement with the prediction of Eq. (4.6). The weak M dependence

in this graph probably results from the Fourier transformation of grid-based averages,[34]

compounded with noise introduced by the assignment of the particles to the grid cells. The

dynamical sum density structure factors, to be discussed in the next section, are also very

similar for M � 7 and 10, suggesting that both gridsizes are acceptable for our purposes.

Introducing the extrapolated value at low q of �7C ρΣ
q C 2 � " 1 ! 10 � 4 into Eq. (4.6), we obtain

a monolayer compressibility of km " 5 � 5εσ � 2 or about 160 mJ/m2. Additional simulations

with a 2048 amphiphile bilayer, in order to reach a lower q, confirmed this value of km.

By increasing the number of grid cells, the range of accessible wavenumbers becomes

larger and a decaying tail develops which is attributed to protrusions,[52] i.e., amphiphiles

sticking out of the smoothly undulating bilayer shape. At the same time, the local maximum

near q " 0 � 5σ � 1 becomes more pronounced. Similar plots, with varying degree of promi-

nence of the local maximum, have been reported by a number of authors[28, 39, 40] for

the thickness or peristaltic modes of a bilayer, which for a nearly incompressible bilayer are

strongly related to the sum density modes.

The compressibility can also be derived from the probability distribution P � φ ,m � of the

monolayer densities per grid cell. Following Eq. (6.1), the probability of finding a cell with a

given curvature, density and area is proportional to the Boltzmann factor exp S � f a Hm 8 φm̂ b am̂
kBT

T .
Since the variation in the cell areas is small relative to the fluctuations of the other two vari-

ables, it seems reasonable to make the approximation a ,m � � a ,m � . Using the independence of

bending and elastic free energies, one then arrives at

P � φ ,m � ∝ exp $ � 1
kBT

km

2φ 2
0
H φ ,m � φ0 I 2 � a ,m � ' � (4.19)

Fitting the histogram presented in Fig. 4.4 with this Gaussian yields km � 5 � 5σε � 2, in agree-

ment with the above calculated value.

Simulation studies of the mechanical properties of bilayers are usually aimed at the cal-

culation of the bilayer area compressibility, [28, 37, 38, 39, 40, 44] KA � a0dτs � da. Several

studies[38, 39] have revealed that the traditional expression for the area, a � 2L2� � N, results

in a system-size (N) dependent effective area compressibility, KA � , due to the neglect of the

excess surface area stored in the undulations, and alternative calculation methods have been
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Figure 4.4: Probability distribution of the monolayer densities per grid cell, calculated using

M2 � 49 grid cells. The smooth line is a fit with the Gaussian of Eq. (4.19).

proposed.[34] This effect is also encountered in experiments, [33, 35, 36] where for large

tension-less vesicles the effective area compressibility approaches zero. It is reassuring then

to find that the two employed system sizes yield matching estimates for km. For small undu-

lations around equilibrium one readily shows KA � 2km, hence the above results correspond

to KA � 11εσ � 2. This value well exceeds the effective elastic modulus KA � � 7 � 6εσ � 2

of the 1152 amphiphile bilayer, but does not quite reach the previously reported value of

KA " 13εσ � 2 for this CG model. [34]

Miao et al.[32] suggested that the effective compressibility, rather then the intrinsic com-

pressibility, should enter the equations of motion of the bilayer, Eq. (4.12). The slow re-

laxation rate γ1 of our model changes by a mere 10% when inserting the aforementioned

extremes of the compressibility; a similar impact is also achieved by a 10% variation of the

distance d. Given the uncertainty in the determination of the latter, it is obvious that the cur-

rent simulations do not permit definitive conclusions as to which compressibility should be

used.

For completeness, we note that the bending rigidity of the bilayer is readily derived by

a Fourier transformation of the height undulations of the bilayer, [37] using either the grid-
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based approach or the direct transformation of Eq. (4.17). The structure factors are observed

to decay as q � 4 for wavenumbers upto about 0 � 5σ � 1, in good agreement with the prediction

of Eq. (4.6) for a tensionless state, followed by a slower decay at higher wavenumbers due

to protrusions. We refer the reader to Fig. 4 of Ref.[34] for a plot made by direct Fourier

transformation; the grid-based results are very similar, but truncated in q-space due to the

chosen grid size M. The bending rigidity is established at 7ε , which amounts to just over

5kBT .

As a final consistency test, we have calculated the remaining diagonal element of Eq. (4.6),

i.e., the density difference structure factors. By averaging over the lowest wavenumbers in the

1152 and 2048 amphiphile systems, we find kmκ � κ̃ � 0 � 92εσ � 2 and 1 � 03εσ � 2, respectively,

with a standard deviation of 15%. These values compare well with the value of 0 � 95εσ � 2

obtained from a direct calculation of kmκ � κ̃ using the aforementioned values of κ and km in

combination with d � 1 � 75σ . Note that this result should not be interpreted as a confirmation

of the assumed distance d between midsurface and neutral surface because the mathematical

manipulations leading from Eq. (6.1) to Eq. (4.6), aside from a few truncated Taylor expan-

sions, hold true for any chosen value of d. Having validated the evaluations of the Fourier

transforms hq and ρ∆
q , we now proceed to study the dynamics of the bilayer.

4.4.2 Dynamics

The shear viscosity of a liquid is routinely calculated in molecular dynamics simulations

from the off-diagonal elements of the stress tensor in a simulation box exposed to a simple

shear flow.[42] A similar approach can be used to determine the rheological properties of the

bilayer, to wit, the in-plane or surface shear viscosity and the intermonolayer friction coeffi-

cient, by imposing perpendicular and parallel shear flows, respectively, on the bilayer and the

surrounding solvent.[19] The resulting numerical values have been mentioned already in Sec-

tion 6.3. In combination with the static properties discussed in the previous subsection, they

enabled us to calculate the theoretical relaxation rates and amplitudes depicted in Figs. 4.1

and 4.2. We have now arrived at the point where we can put these predictions to the test, by

comparing them against actual simulation results.

The time correlations of the height undulations are depicted in Fig. 4.5 for the six smallest

wavevectors matching the box dimensions. In view of the expected scaling behaviour at long
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Figure 4.5: Normalised undulation auto correlation functions (solid) for the six smallest wave

vectors commensurate with the box dimensions, i.e., q � 0 � 18σ � 1 (top), 0 � 25σ � 1 (middle,

shifted down by half a decade) and 0 � 36σ � 1 (bottom, shifted down by one decade). The

dotted lines are calculated by Eq. (5.8), using the exact relaxation rates and amplitudes of

Figs. 4.1 and 4.2, respectively.

times, see Eq. (4.13), we have scaled the time axis by q2. The linear-log plot shows that the

resulting lines are all running reasonably parallel, thus confirming that the decay rate of the

slow relaxation process scales nearly quadratically with the wave number. Similar slopes are

also displayed by the theoretical curves (dotted lines) calculated by Eq. (5.8), using the exact

relaxation rates and amplitudes, implying that the simulated decay rates closely match the γ1

derived for the slow relaxation mechanism. Furthermore, the overall good agreement between

theory and simulation, with the largest relative deviation occurring for the two wavevectors

running diagonally through the box, also lends support to Eq. (4.16) for the amplitude Ah
1.

For the chosen wavenumbers, the decay of the undulations is thus seen to be dominated by

intermonolayer friction.

The enlargement of Fig. 4.5 in Fig. 4.6 shows that, unlike the long time behaviour, the

simulated decay on the short γ � 1
2 time scale deviates from the predicted decay. An initial devi-

ation is not entirely unexpected, however, because Onsager’s regression hypothesis is known
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Figure 4.6: The short-time behaviour of the time correlation of the undulations (solid), aver-

aged over the two wave vectors with the smallest wave number matching the box dimensions,

q � 0 � 18σ � 1. A double exponential fit is shown as a dashed line, with the slow mode of this

fit represented by the linear dash-dotted line. The dotted line is the theoretical prediction,

Eq. (5.8).

not to hold on transient time scales.[9] Using time reversal symmetry, one readily proves that

the initial slope of the time correlation function must be zero, as is indeed observed for the

simulation data, and hence some time must elapse before the theoretical double exponential

decay can set in. But the fast mode of Eq. (5.8) has nearly completed its decay to zero by

the time theory and simulation coalesce, after some 20 to 50 τ depending on q. By fitting the

time correlations directly with double exponential functions, using the two relaxation rates

and two amplitudes as fit parameters, it nevertheless is possible to make a rough estimate of

the fast relaxation rate. In Fig. 4.1 we see that the fast rates compare surprisingly well with

theory; as discussed before, the agreement for the slow mode is very pleasing. The fitted

amplitudes for the slow modes are in line with the numerical values of Ah
1, see Fig. 4.2, while

it is obvious from the fit of Fig. 4.6 that the amplitudes of the fast process overestimate Ah
2.

The Fourier coefficients of the undulations were calculated twice, using both the direct

method of Eq. (4.17) and the more involved grid-based method outlined in Section 6.3, but we
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Figure 4.7: Simulated (solid) and theoretical (dotted) time correlation functions of the pro-

jected density difference. See also Fig. 4.5.

found no significant differences between the two. On the other hand, the density difference

time correlation proved much more sensitive to the details of the calculation. The simplest

approach is to treat the bilayer as a flat plane with lateral density variations, i.e., ignoring

the undulations altogether, in which case ρ∆
q �G� φ /q � φ �q � � 2φ0 with φ ,q given by the direct

Fourier transformation of Eq. (4.18). The resulting time correlations, however, show little

resemblance to the theoretical predictions of Eq. (4.15) and rapidly drop by nearly two orders

of magnitude before being engulfed in the background noise. Relaxation times obtained by

fitting these transient decays range between 4 and 12 τ , and although of the same order as

γ � 1
2 , they do not support any scaling law in q.

In order to make a fair comparison with theory, we have analysed the data again using

the elaborate grid method outlined in Section 6.3. The ensuing time correlations are plotted

in Fig. 4.7 for M � 7, were the time axis is again scaled by q2; increasing M to 10 hardly

affects the plot. The slowly exponentially decaying lines run nearly parallel to oneanother

for all six wavevectors, and their slopes are in good agreement with the predicted relaxation

rate γ1. The fast initial decay by some 10%, and its non-zero initial slope, are probably due

to the strict, yet fairly arbitrary assignment of the amphiphilic particles to the grid cells. In

70



4. MOLECULAR DYNAMICS SIMULATIONS OF THERMAL UNDULATIONS OF LIPID BILAYERS
IN THE TENSION-LESS STATE AND UNDER STRESS

0.1 1.0
q   /   σ-1

10-3

10-2

10-1

γ 1   
/  

 τ
-1

Figure 4.8: The slow relaxation rates γ1 of a tension-less bilayer (solid line and circles), of

a bilayer under 2.6% stretch (dotted line and triangles) and of a bilayer under 6.7% stretch

(dashed line and pluses), as functions of the wave number. The lines are calculated using

the theory described in the appendix, the markers are obtained by fitting the simulated time

correlations of the undulations for the three smallest wave numbers.

summary, both the undulations and the density difference relax with the anticipated slow rate

γ1, but because of the necessity of an intricate grid-based calculation in the latter case, we

recommend using the undulations when establishing the relaxation rates.

4.4.3 Stretched bilayers

Simulations of stretched membranes indicate that the slow relaxation rate is fairly sensitive

to the surface tension. Upon increasing the ground plane area of the box by some 2.6%,

exposing the bilayer to a tension of τs � 0 � 21ε � σ 3, the relaxation rate γ1 of the smallest

wavenumber rises by about two-thirds. At an even higher 6.7% elongation, corresponding

to τs � 0 � 54ε � σ 3, the rate has increased to nearly 2.5 times its original value. A possible

explanation for the increase of γ1 might be that the tension alters the structure of the bilayer,

for instance by reducing the undulations or the extent of interdigitation of the opposing tails,

which in turn could reduce the intermonolayer friction coefficient. A direct measurement
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Figure 4.9: Normalised undulation auto correlation functions for the two smallest wave vec-

tors commensurate with the box dimensions, q � 0 � 17σ � 1, for a bilayer stretched by 6.7%.

A clear oscillatory contribution is visible, which is not observed for the tensionless bilayer of

Figs. 4.5 and 4.6.

of b by simulations of stretched bilayers under parallel shear[19] showed that this is not

the case. The inclusion of a small surface tension in the derivation of Section 4.2 is fairly

straightforward, though a bit laborious – we have deferred this derivation to the appendix.

After these modifications, the predicted tension-dependent relaxation rates γ1 are again in

reasonable agreement with the simulation results, especially for the lowest wave number, as

illustrated by Fig. 4.8. Interestingly, the simulated time correlations at the highest tension

display a small oscillatory component superimposed on the slow decay, see Fig. 4.9, similar

to that observed by Pott and Méléard[22] for undulating tense vesicles. To eliminate thermal

noise as a possible source of the oscillations, this simulation was extended to 105 τ (γ1tsimu "
500), but the fluctuations persisted. An oscillation is of course not captured by the current

linear equations of motion, but requires an extension of the theory to higher order.
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4.5 Discussion and conclusions

We have performed molecular dynamics simulations of thermally fluctuating tension-less

and stretched bilayers, using a coarse grained amphiphilic model. The time correlations of

the undulations and of the monolayer density difference were found, see Figs. 4.5 and 4.7,

to agree well with an intermonolayer friction dominated relaxation process, as predicted by

Seifert and Langer[23, 24] for these relatively short length scales. We want to emphasize

that the theoretical curves appearing in these plots are not fitted, but are calculated from

elastic and dynamical properties established in independent equilibrium and non-equilibrium

simulations. Only one parameter could not be determined beforehand, to wit, the distance

d between the neutral surface of the monolayers and the midsurface of the bilayer, which

we judiciously choose to be half the monolayer thickness. Because of the good quantitative

agreement, it is tempting now to extract a value for d by fitting the theory to the simulated

relaxation rates. The 3% higher value thus obtained confirms our choice, and lies well within

the physically acceptable range. This result for a simple amphiphile of five similarly sized

beads does, of course, not imply that the neutral surface will always lie in the middle of

the monolayer. Furthermore, in actuality d need not be a constant but is more likely to

fluctuate with the peristaltic motions of the membrane. The indeterminacy of d complicates

the extraction of an intermonolayer friction coefficient from the relaxation rates, which might

be alleviated by using[22] b � κkmq5 � 8ηγ1γ2 if both rates can be measured accurately for a

tension-less membrane. Bilayers under tension are also well described by the theory, except

for a small superimposed oscillatory contribution which still awaits an explanation.

Stacks of membranes posses an undulation mode whose relaxation rate[13, 23, 26] γs "� κ̃ � 2η l � q2 is inversely proportional to the inter-membrane distance l. In order to be sure that

our relaxation times are not unduly influenced by the periodicity of the simulation box in

the direction perpendicular to the bilayer, we have also performed simulations of a 1152 am-

phiphile bilayer in a box with twice the original height, retaining the overall number density

of 2
3 σ � 3. The relaxation rates differed slightly from those of the original box, but certainly

not enough to support a 1 � l dependence of γ1 or γ2. We conclude, therefore, that our simu-

lated relaxation rates are those of a single freely floating membrane.

Having confirmed the theory on a simplified coarse-grained model, is it instructive to

see what its implications are for a realistic membrane. Based on the typical experimen-
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tal values[16, 35] κ � 4 ! 10 � 20 J, k � 250 mN/m, η � 10 � 3 Pa s, b � 108 Ns/m3, and an

estimated d " 1 nm, we expect a cross-over wavenumber of about qc � 8 � 6µm � 1. Since

most experiments sample smaller wavenumbers, they are in the regime where the membrane

predominantly relaxes through viscous dissipation in the solvent. This process is described

by both the classical and the current theory, γ1 � Γ ∝ q3 for q ( qc. Molecular dynamics

simulations using a fully atomistic or a coarse grained model commonly encompass some

1000 amphiphiles, corresponding to[28] q " 0 � 35 nm � 1, and therefore relax mainly by in-

termonolayer friction. The relaxation times at this particular wavenumber are estimated at

γ � 1
1 " 0 � 1µs and γ � 1

2 " 0 � 3 ns, where the former timescale exceeds most simulations to date.

This leads us to conclude that the intermonolayer friction coefficient is best calculated by

non-equilibrium simulations, i.e., by enforcing a velocity difference between the monolayers

and measuring the corresponding friction force.[19] These driven simulations also have the

advantage of not relying on an estimated value for d. We furthermore note that the scaling

law for the structure factors, ��C hq C 2 � � kBT � κq4, as commonly used to determine the bending

rigidity κ , only applies if the average is taken over a time scale well in excess of the slowest

relaxation time γ � 1
1 . This criterium is not easily met in simulations of bilayer patches large

enough to display undulations, and consequently the calculated bending rigidity will often lie

intermediate between the intrinsic bending rigidity κ and the effective bending rigidity κ̃ . In

these cases, a free-energy calculation can be used to determine the bending rigidity.[38] An

accurate estimate of the intermonolayer friction coefficient is therefore not only interesting by

itself, as a key parameter in a study on bilayer dynamics, but also because of its indirect, and

hitherto largely unappreciated, consequences for the calculation of bilayer bending rigidities,

and possibly also other static properties, by molecular dynamics simulations.

4.6 Appendix: bilayer under stress

In this appendix, we outline the changes required to extend the theory of Section 4.2 to

bilayers under tension. The main difference is in the free energy density of the stretched

bilayer,[53] which will be derived here from the Helfrich theory, see Eq. (6.1). We start by

74



4. MOLECULAR DYNAMICS SIMULATIONS OF THERMAL UNDULATIONS OF LIPID BILAYERS
IN THE TENSION-LESS STATE AND UNDER STRESS

introducing φ̄ � N � � 2A � , the mean surface density of the monolayers for a bilayer with a

total curved midsurface area A. Note that this area and φ̄ depend on the configuration U hq V
of the bilayer, while the average � φ̄ � is a function of the box size L � only, and hence of the

tension. Since experimental bilayers will rupture when elongated by about 3%,[46, 54] we

will assume that φ̄ is only slightly smaller than φ0. Repeating the steps of Section 4.2.1, the

free energy density is then expressed as

f � ∑
q

fq  2
km

2φ 2
0
� φ̄ � φ0 � 2 � (4.20)

The fq, which are still given by Eq. (4.5) after redefining the projected sum density fluctu-

ations as ρΣ �`� ψ /c ψ � � 2φ̄ � � φ0, account for local density fluctuations around φ̄ , while

the last term in Eq. (4.20) results from the global reduction of the mean density from φ0 to

φ̄ under stress. Next, we Taylor expand the latter term around the average � φ̄ � , and use a

Hookean law for the tension, τs � k � φ0 � � φ̄ ��� � φ0, to arrive at the first step in

k
2φ 2

0
� φ̄ � φ0 � 2 " τs

φ̄
φ0
 c1 � L � � " τs ∑

q
q2h2

q  c2 � L � � � (4.21)

In the second step, the area A has been Taylor expanded to lowest order in the undulation

amplitudes, and we made use of the approximation A0 " L2� valid for small system sizes and

small tensions. The c1 and c2 collect terms that are independent of the configuration; their

contribution to the free energy may be neglected when analysing membranes with fixed L � .
We thus see that the global elasticity term in Eq. (4.20) approximately reduces to an additional

contribution τsq2h2
q for every fq. The implication for Eq. (4.5) is that the top-left element of

the energy matrix Eq now reads κ̃q4  τsq2, while all other elements of that matrix remain

unchanged.[53] Physically, these contributions express that increasing hq enlarges the area

of the membrane, which at fixed system size N and fixed groundplane area L2� results in a

change of the elastic energy. One readily verifies that the equipartition theorem now recov-

ers the well-known dispersion relation �7C hq C 2 � � kBT � � κq4  τsq2 � for a membrane under

tension.[28, 34, 55] Inserting this energy matrix into the otherwise unchanged equations of

motion of Section 4.2.2, and proceeding along the lines of that section, one readily recovers

the modified characteristic expression for the relaxation rates. At the wave numbers accessi-

ble by simulations, the surface tension is found to increases the relaxation rate γ1 of the slow

relaxation process, see Fig. 4.8. While the high q limiting rate laws appearing in Eq. (4.13)
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are not affected by the tension, the low q limiting rate laws change into γ1 �<� τ � 4η � q and

γ2 ��� km � 4b � q2.
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5
The influence of lipid

architecture on

the intermonolayer friction and

shear viscosity

of bilayer membranes

The resistance of bilayer membranes against flow can be characterized by a sur-

face viscosity for in-plane shear deformations, and an intermonolayer friction

coefficient for slip between the two leaflets of the bilayer. We have used equi-

librium and non-equilibrium molecular dynamics simulations to study both pa-

rameters for a variety of coarse-grained model lipids. The single-tail lipid model

of the previous chapter is extended with pairwise friction and random forces to

fine-tune its dynamical properties, but this modification proves only moderately

successful. Double-tailed lipids are therefore simulated using another, recently

introduced coarse-grained model. For lipids with two identical tails, the surface

shear viscosity rises rapidly with tail length, while the intermonolayer friction

coefficient is less sensitive to the tail length. Interdigitation of lipid tails across

the bilayer midsurface, as observed for lipids with two distinct tails, strongly

enhances the intermonolayer friction coefficient, but leaves the surface viscosity

unaltered. The systematic underestimation of the experimental surface viscosity

and intermonolayer friction, observed for all analysed lipid models, is attributed

to the deficiency of coarse-grained models to accurately describe the interactions

between close-packed alkanes.
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5.1 Introduction

Membranes play a vital role in living cells, where they act as semi-permeable barriers, host

numerous proteins, and provide mechanical strength while retaining a high degree of flex-

ibility. [1, 2, 3] Membranes consist of lipids, i.e., biological amphiphiles, which cluster

into locally planar bilayered structures under a combination of hydrophobic and hydrophilic

interactions. In the absence of covalent bonds between the lipids, a bilayer behaves as a two-

dimensional liquid characterised by a surface shear viscosity ηs. Relative motion between

the two leaflets of a bilayer is opposed by a friction force; the ratio between the force per unit

area and the slip velocity is known as the intermonolayer friction coefficient b. Living cells

actively control the flow characteristics of their membranes by changing the mixture of lipids

and cholesterol present in the membrane. Here we are interested in how the flow properties

of homogeneous bilayers are related to their constituent lipids.

Current experiments to measure surface shear viscosities of membranes are all based on

the theoretical work of Saffman,[4] who derived an expression for the translational diffusion

coefficient of a tracer particle confined to a membrane, i.e., a geometry-specific analogue

of the familiar Stokes-Einstein relation. Most viscosity measurement employ membrane-

bound proteins[5, 6] as the diffusing tracer particle, while recently latex spheres have been

used.[7, 8] Typical surface shear viscosities reported in the literature lie in the range of 10 � 7 to

10 � 6 surface poise (where 1 SP = 10 � 3 Pa m s). The best-studied tracer particles, however, are

the lipids constituting the bilayer, [5, 9, 10, 11, 12, 13] but their lateral diffusion coefficients

D are rarely converted into surface viscosities because these tracers are considered too small

for Saffman’s continuum hydrodynamics model to hold true, and because lipids are strongly

affected by microdomain formation within the membrane. Fluorescence after photobleach-

ing (FRAP) experiments[12] indicate that the saturated symmetric phosphatidylcholine (PC)

lipids DLPC, 1 DMPC and DPPC have surprisingly similar diffusion coefficients at 50 d C,

despite varying in tail length from 12 to 16 carbon atoms, while the diffusion coefficient

of the asymmetric POPC is lower by about one-third. In nuclear magnetic resonance (NMR)

1 Abbreviations used: DLPC = dilauroylphospatidylcholine (diC12:0), DMPC = dimyristoylphospatidylcholine

(diC14:0), DPPC = dipalmitoylphospatidylcholine (diC16:0), DSPC = distearoylphospatidylcholine (diC18:0),

POPC = 1-palmitoyl-2-oleoylphospatidylcholine (C16:0/C18:1c9 ), DOPC = dioleoylphospatidylcholine (diC18:1c9 ),

SOPC = 1-stearoyl-2-oleoylphospatidylcholine (C18:0/1c9) and CHOL = cholesterol.
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measurements,[10] however, the lipids DMPC, POPC and DOPC were found to posses nearly

identical diffusion coefficients, suggesting a remarkable insensitivity to both tail length and

saturation. A recent NMR study[9] reports a decrease in the lateral diffusion with increasing

tail length, for monounsaturated lipids with tails of up to 22 carbons. Addition of cholesterol,

which is known to increase the ordering of the lipids and to induce domain formation, slows

the lateral diffusion down, as does a reduction in the temperature. The surface viscosity, for

which much fewer data are available, is expected to follow trends reverse to those of the

diffusion coefficient, i.e., ηs declines where D rises and vice versa.

The intermonolayer friction coefficient, whose existence first came to prominence a decade

ago, [14, 15, 16, 17, 18] has been measured by a number of techniques. In the experiments

described by Evans and Yeung[14] and by Chizmadzhev et al.,[19] a mechanical force is used

to pull the bilayer through a region of extremely high local curvature, causing the monolay-

ers to slip past oneanother. Merkel et al.[20] fixed the bottom monolayer of a membrane

to a glass substrate and deduced a friction coefficient from the diffusion of tracer lipids in

the top monolayer. Pfeiffer et al.[21] and Pott and Méléard[22] derived friction coefficients

from the decay rates of thermal undulations of bilayers and vesicles, respectively, but the

interpretation of these experiments proved to be complicated. These experiments yield a

typical range of 108 to 109 Pa m � 1 s for the intermonolayer friction coefficient. The relation

between intermonolayer friction and lipid architecture has hardly been explored. Here again,

cholesterol has been found to slow down the dynamics; the intermonolayer friction coeffi-

cient of SM/CHOL (in a 1:1 mixture) is nearly an order higher than those of SOPC/CHOL

and MOPC/CHOL. [23] It is our expectation that b is strongly affected by interdigitation, i.e.,

long lipid tails whose ends cross the bilayer midsurface and protrude among the tails of the

opposing bilayer leaflet. [24, 25, 26]

Computer simulations have provided a wealth of detailed information on membranes,[27,

28] but there are few studies focusing on the flow properties of bilayers. A number of au-

thors have reported lipid diffusion coefficients, [29, 30, 31, 32] also in relationship to tail

length,[33, 34] but these have not been related to the surface shear viscosity. The exponential

relaxation of thermal undulations[35] and the relative Brownian motion of monolayers[34]

are, in principle, connected to the intermonolayer friction. The first direct calculations of ηs

and b have been reported only recently, using bilayers under shear[36] and at equilibrium.[36,
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37] Here we extend our previous studies by using a series of coarse-grained model lipids to

explore the relationship between lipid architecture and bilayer flow behaviour.

The outline of this paper is as follows: The techniques used to calculate surface viscosities

and intermonolayer frictions from both equilibrium and non-equilibrium molecular dynamics

simulations are described in the next section. Simulations with the single-tail lipid model

by Goetz and Lipowsky,[31] and an amended version thereof, are presented in Section 5.3.

The dynamics obtained with the double-tail lipid model by Marrink et al.[32] is analysed in

Section 5.4, with the tail lengths of the latter model being varied in Section 5.5. We end with

a discussion and summary of the results in Section 5.6.

5.2 Theory

The aim of this section is to provide a brief introduction to the key parameters in the static

and dynamic description of membranes, and to describe the simulation techniques that we

have used to calculate these parameters.

5.2.1 Static properties

In the analytical continuum description of a membrane, the configuration of a near-planar

bilayer is conveniently described, in the Monge representation, by the elevation u � x � of the

midsurface of the bilayer relative to a flat reference plane for any point x on this plane. The

free energy of the bilayer is then given by the Helfrich theory,[2, 38, 39]

F � u � � 2κ
�

H2 � x � dx  KA

2
A0 % A � u � � A0

A0 & 2 � (5.1)

The first term on the r.h.s. yields the bending free energy, with bending rigidity κ and mean

curvature H � 1
2 ∇2u. An additional bending contribution from the Gaussian curvature has

been ignored here, as this term is constant in the current set-up. The second term on the r.h.s.

describes the global elastic energy, where A is the area of the midsurface, A0 the equilibrium

area and KA the bilayer elastic modulus. Note that at this level of description, which is

the starting point for experimental and simulation studies on the mechanical properties of

membranes, the twinned nature of the bilayer is irrelevant.
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Figure 5.1: Cartoons of the simulation set-up of a bilayer under shear, with the arrows indi-

cating the flow fields. A perpendicular shear flow (left) is used to determine the surface shear

viscosity of the bilayer, a parallel shear flow (right) for the intermonolayer friction coefficient.

In our simulation set-up, see Fig. 5.1, the nearly flat bilayer is oriented parallel to the

square xy ground plane of a periodic simulation box with dimensions L � _ L � _ L � . Differ-

entiating the free energy with respect to the groundplane area A � � L2� , at constant volume,

one then arrives at

L � ∆p � % ∂F
∂A � & V

" KA

A0 � A � � A0 � � (5.2)

The l.h.s. is exact, with ∆p � pzz � 1
2 � pxx  pyy � and p the stress tensor. On the r.h.s. we have

made the common assumptions that the area dependence of F is dominated by the elastic

term, and that A � u � " A � for a nearly flat bilayer, although these approximations are to be re-

garded with care.[40] In the absence of externally imposed restraints, a freely floating bilayer

of N molecules will adapt a tensionless state where its average area equals the equilibrium

area of A0 � Na0 � 2. We reproduce this state as closely as possible in our simulations, by

varying the groundplane area of the box until ∆p � 0.

Exploiting the periodicity of the simulation box, we next express the midsurface of the

bilayer as a Fourier series,

u � x � � ∑
q

hqeiq ] x 
 (5.3)

where q � 2πn � L � is a wave vector with integer vector n ��� nx 
 ny � . By noting that hq � u � � q

for a real function u � x � , with the asterisk denoting a complex conjugate, the summation can

be reduced to two quadrants. Inserting this series into the Helfrich expression and using the
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equipartition theorem, one readily recovers the structure factors[2]

S � q � � � hqh �q � � kBT
κA � q � 4 (5.4)

for a bilayer in the tension-less state, with T the temperature, kB Boltzmanns constant and the

pointed brackets denoting a canonical average.

5.2.2 Surface viscosity

The surface shear viscosity of a bilayer is easiest established in molecular dynamics sim-

ulations by shearing the bilayer,[36] analogous to standard shear viscosity calculations for

liquids.[41] A so-called perpendicular shear flow is imposed on the bilayer by applying Lees-

Edwards sliding boundary conditions [41] along the y direction, see Fig. 5.1, culminating in

a linear flow field v � r � � yγ̇ êx in both the bilayer and the surrounding solvent. The surface

viscosity is defined as the proportionality constant between the applied shear rate γ̇ and the

corresponding shear force acting per unit length of bilayer,

ηs � Fbilayer
shear
L � γ̇ � � pxy � L � L � � ηwγ̇ � L � � h � L �

L � γ̇ � (5.5)

The simulation algorithm readily provides the total force applied to shear the bilayer plus the

solvent, by means of the off-diagonal stress tensor element pxy times the area L � L � , but it

does not yield the separate force contribution to shear the bilayer. In the last numerator of

Eq. (5.5), therefore, we have explicitly calculated the shear force on the solvent, using the

solvent viscosity ηw and the bilayer thickness h, and subtracted this force from the total shear

force to arrive at the desired bilayer force.

In simulations and experiments with quiescent membranes, the surface viscosity can also

be deduced from the lateral diffusion coefficient of an embedded tracer particle, by means of

the Saffman-Stokes-Einstein expression,[4]

D � kBT
4πηs $ ln % ηs

Rηw & � 0 � 577 ����� 'e� (5.6)

Here, the tracer particle is a mesoscopic cylinder of radius R, oriented parallel to the mem-

brane normal, with a length exceeding the membrane thickness. The membrane is regarded

as a single planar two-dimensional fluid, surrounded by solvent on either side.
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Figure 5.2: The velocity along the flow (x) direction, as a function of the height (z) in the

simulation box, for a bilayer exposed to a parallel shear with an extremely high shear rate.

The two monolayers, each about 20 Å thick, are seen to slide along one another with a velocity

difference 2∆v, while the solvent shows a linear flow field with shear rate γ̇w.

5.2.3 Intermonolayer friction

Shear simulations are also an attractive tool for inducing slip between the two leaflets of a

bilayer, by using Lees-Ewards sliding boundary conditions along the z direction to create a

so-called parallel shear flow, see Fig. 5.1. The imposed periodic flow field, v � r  L � êz � �
v � r �  L � γ̇ êx, results in a non-linear velocity profile, depicted in Fig. 5.2, because the sheared

system is non-homogeneous along the bilayer normal. In this graph, one readily recognizes

the monolayers as two slabs of thickness h � 2 moving with equal but opposing velocities� ∆vêx, resulting in friction forces - Ffrictionêx working at the midsurface of the bilayer. The

solvent on either side of the membrane displays a linear profile with a shear rate γ̇w, which

clearly is larger than the imposed rate γ̇ , from which the tangential solvent forces acting

on the top and bottom monolayers are readily deduced by assuming stick boundaries at the

interfaces. The intermonolayer friction coefficient is then calculated from

b � 2Ffriction

2A � ∆v � ηwγ̇w

∆v
� (5.7)
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where the force balance on the bilayer has been used in the last step to equate the intermono-

layer friction force to the solvent shear forces.

The velocity profile of Fig. 5.2 was obtained at a high shear rate of γ̇ � 0 � 01 ps � 1, to

emphasize the slip velocity ∆v against a background of thermal noise. At the lower shear rates

employed in most simulations it is nearly impossible to extract ∆v from the velocity profile. In

those cases the slip velocity can be calculated from either the average distance travelled by an

amphiphile i along the flow direction over a time interval t, ∆v � � � xi � t � � xi � 0 ��� � t, or from

the shear rate in the solvent, 2∆v � γ̇L � � γ̇w � L � � h � . Note that the last expression assumes

stick boundary conditions at the bilayer-solvent interfaces, hence the observed agreement

between these two approaches justifies this assumption and thereby the last step in Eq. (5.7).

Intermonolayer friction not only rises to prominence in an external flow field, but in

any deformation of the bilayer which causes the two monolayers to move relatively to one-

another. Seifert and Langer[16, 17] and Evans and Yeung[14, 18] independently derived the

coupled equations of motion for the undulations and the monolayer densities of bilayers in

near-planar and axial-symmetric configurations, respectively. In these equations, which are

valid in the creeping-flow limit, the driving forces derived from the bending and elastic free

energies in a generalised Helfrich equation are opposed by dissipative forces due to surface

viscosity, intermonolayer friction and solvent viscosity. The latter requires solving the veloc-

ity and pressure fields in the solvents above and below the membrane, subject to the boundary

conditions set by the normal and lateral velocities of the bilayer (where, again, stick boundary

conditions are assumed). We refer the interested reader to previous work [16, 17, 42] for the

detailed analytical solution of this model, and directly proceed to the final result: the Fourier

coefficients hq of the undulations relax independently to equilibrium by a double exponen-

tial decay. In combination with the Onsager regression hypothesis, the time correlation of a

thermal undulation then reads� hq � t � h �q � 0 ��� � A1e � γ1t  A2e � γ2t � (5.8)

The positive amplitudes Ai are functions of the wave number, and obviously obey A1  A2 �
S � q � . The relaxation rates γi converge to power-law behaviour on either side of a cross-over

wavenumber qc � ηKA � bκ̃, with κ̃ � κ  KAd2 the effective bending rigidity and d, the

distance between the bilayer midsurface and the monolayer neutral surfaces,[16, 42] approx-

imately equal to half the monolayer thickness (hence, d � h � 4). By inserting typical experi-
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mental values one finds that qc " � 0 � 5 � 5 � 0 � µm � 1 lies well below the smallest wavenumbers

encountered in membrane simulations with molecular detail, qmin � 2π � L � " 0 � 5 nm � 1. We

therefore expect in these simulations a slow relaxation process dominated by intermonolayer

friction, γ1 �G� KAκ � 4bκ̃ � q2, and a fast relaxation process through viscous dissipation in the

solvent, γ2 ��� κ̃ � 4η � q3. The double exponential decay has been observed in experiments on

vesicles[22] and in simulations of planar membranes,[37, 42] where it proved sensitive to the

surface tension. Note that for low wavenumbers, q ( qc, the scaling laws for the relaxation

rates are exchanged, with κ̃ replaced by κ . The fast relaxation is now dominated by inter-

monolayer friction and the slow relaxation by solvent viscosity; the rate of the latter process

has previously been derived for membranes without internal friction.[43, 44]

5.2.4 Coarse graining

Fully atomistic simulation models of membranes place a heavy burden on available com-

puter resources and are therefore limited to small time and length scales. These drawbacks

can be overcome by using a coarse grained (CG) simulation model, in which a number of

atoms are grouped together into one interaction site, known as a CG particle. In the sim-

plest and most-widespread implementations, the CG particles interact with their neighbours

through pairwise-additive conservative forces, describing an effective average of the conser-

vative forces acting between the atoms usurped in the particles. These smoothed potential

forces are often the only forces included in a CG simulation, as is the case for the two CG

lipid force fields applied here,[31, 32] because the conservative forces fully determine the

thermodynamic properties of the system.

The eliminated fast motions of the atoms also give rise to friction and random forces at

the level of the CG particles, turning the equation of motion of the CG particles into a non-

deterministic Langevin-type equation.[45] In Brownian dynamics simulations these two ad-

ditional forces are implemented as external forces, acting relative to a fixed background,[41]

while in dissipative particle dynamics (DPD) they are specifically designed as pairwise-

additive forces between the particles. [46, 47] The latter approach conserves local momen-

tum, and hence hydrodynamic interactions appear naturally, which makes it our method of

choice for the current shear simulations. In DPD, the force on particle i is expressed as a sum
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over neighbours j, each contributing

Fi j � Fc � ri j � r̂i j � γdωd � ri j � � vi j ! r̂i j � r̂i j  σrωr � ri j � θi j r̂i j � (5.9)

Here r̂i j is the unit vector pointing from j to i, ri j the distance between the particles, and

vi j their velocity difference. The details of the conservative force Fc will be specified below;

although we follow the main structure of the DPD equations of motion, we do not copy

the extremely soft pair potentials usually associated with DPD. We follow the conventional

choice of a linearly declining random force, ωr � r � � 1 � r � rc upto the cutoff distance rc, with

strength σr. The parameters of the friction force then follow from the fluctuation-dissipation

theorem,[46] 2kBT γdωd � r � � σ 2
r ω2

r � r � , which clearly illustrates the combined operation of

friction and random forces as a thermostat maintaining a temperature T in the simulated

system. In the last term of Eq. (5.9), the Markovian random numbers θi j � t � have zero average,

unit standard deviation, are uncorrelated across particle pairs and are delta-correlated in time.

5.3 Single-tail lipid model

Goetz and Lipowsky[31] introduced a coarse-grained model in which an amphiphile is repre-

sented by a single head bead (h) attached to a string of four tail beads (t), immersed in a liquid

of loose water beads (w). Interactions between like particles and the hydrophilic head-water

interactions are modelled by a Lennard-Jones potential, ΦLJ � r � � 4ε � � σ � r � 12 �f� σ � r � 6 � ,
where the parameters ε � 2 kJ/mol and σ � 1 � 3 nm are tuned to roughly match a CG par-

ticle to two water molecules or three CH2 units. The hydrophobic tail-water and tail-head

interactions are modelled by a purely repulsive potential, Φrep � r � � ε � 1 � 05σ � r � 9. The non-

bonded forces are implemented in a shifted force fashion, ensuring a smooth truncation of

both energy and force at a cut-off distance of 2.5 σ . Harmonic bond potentials, Φbond � l � �
5000εσ � 2 � l � σ � 2, are used to connect the particles within a molecule. Bending stiffness is

introduced by an angle potential, Φangle � φ � � 2ε � 1 � cos � φ � � ; there are no dihedral poten-

tials. All particles have the same mass m of 36 a.u., at a fixed number density of 2 particles

per 3 σ 3. In all simulations the temperature is maintained at 1.35 ε � kB � 325 K, using either

a Nosé-Hoover thermostat[41] or by the DPD thermostat of Section 5.2.4. All simulations

were run with the DL POLY 2.0 package,[48] tailored to our specifications, using the Verlet
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leapfrog scheme with a time step of τ � 500, where τ � � mσ 2 � ε is the implicitly defined unit

of time. The thermodynamic properties previously obtained with this model, like the elas-

tic modulus,[31, 40] bending rigidity[49, 50] and line tension coefficient,[51, 52] compare

favourably with experimental data. Here we focus on the dynamical properties of the model,

which were not taken into consideration by Goetz and Lipowsky[31] when they developed

the model. It is therefore to be expected that the dynamics of this model, like that of many

other CG models,[32] evolves quicker than that of experimental systems.

To ascertain the speed-up, we first performed simulations of the separate components

of the model. Solvent exposed to shear rates ranging from 0.001 to 0.2 τ � 1 behaved like a

Newtonian liquid with a viscosity ηw � 1 � 0ε1  2m1  2σ � 2 or 1 � 3 ! 10 � 4 Pa s, which amounts

to about one quarter of the experimental viscosity of water at this temperature.[53] The vis-

cosity of a homogeneous liquid of chains of five tail particles, t5, was found to be ηtail "
2 � 1ε1  2m1  2σ � 2, or about 1/8th of the experimental viscosity of the corresponding n-pentadecane

liquid.

The dynamical properties of bilayers constructed with this lipid model have previously

been reported elsewhere;[36] here we briefly summarise the results to motivate the need for

an amended model. A bilayer system was created by placing 1152 lipids on lattice posi-

tions and surrounding them by 10,800 randomly placed solvent particles. The box was

equilibrated and rescaled to minimize the surface tension, until the tension-less state was

reached, ∆p � 0. Additional confirmation hereof was provided by the scaling exponent of

almost -4 observed in a structure factor calculation, see Eq. (5.4). By applying perpendic-

ular shear flows to this system, the surface shear viscosity of the bilayer was found to be

about 20 ε1  2m1  2σ � 1, or 8.5 ! 10 � 13 Pa m s, for shear rates ranging from 0.01 to 0.1 τ � 1.

Simulations under parallel shear flow yielded an intermonolayer friction coefficient b �
3 � 7ε1  2m1  2σ � 3, or 1.4 ! 106 Pa m � 1 s, for slip velocities upto 0 � 014σ � τ , while the bilayer

became unstable at higher slip velocities. Note that both ηs and b underestimate experimental

findings by some two to three orders of magnitude. Although this speed-up by coarse-grained

models is convenient when developing and testing new simulation techniques, it is rather in-

convenient if one aims at reproducing or even predicting experimental results. Hence, we

want to remedy this situation by improving the employed simulation model.

In the Goetz-Lipowsky model only potential forces are used, while friction and random
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forces, which naturally arise in a coarse-graining procedure, are ignored altogether. Here

we are going to reinstate these forces, in order to improve the dynamical properties of the

model – this addition leaves the thermodynamical properties of the system unaltered. By

increasing the viscosities of the solvent and of the t5 liquid to realistic values, we aspire to

obtain improved values for the surface viscosity and intermonolayer friction of the bilayer.

To this effect, we simulated the above described homogeneous systems again, using friction

and random forces implemented in the pairwise fashion detailed in Section 5.2.4. The cut-off

distance of the DPD forces was set equal to that of the conservative forces. Upon varying the

DPD parameter σr, which implies changing γd to maintain a constant temperature, the vis-

cosity of the solvent showed a nearly quadratic dependence on σr, reaching the experimental

viscosity of water for σr � 210ετ1  2 � σ . The t5 viscosity revealed shear thinning, with a

reduction of the viscosity by about 30% over the range γ̇ W � 0 � 01 � 0 � 06 � τ � 1. A friction pa-

rameter σr � 350ετ1  2 � σ was needed to match the extrapolated viscosity at zero shear rate

with the experimental viscosity. The friction and random forces are thus capable of raising

the solvent and t5 viscosities to the desired levels, albeit at the expense of a 30% increase in

the computational effort per simulation step.

The two established values for σr were carried over to the bilayer system – all lipid-lipid

interactions were treated similarly to a t � t interaction, while for solvent-lipid interactions the

σr of the more nimble solvent particles was used. In subsequent simulations under parallel

and perpendicular shear, we found that the addition of friction and random forces did not quite

have the impact we had hoped for. Despite the near ten-fold increase of the t5 viscosity, the

intermonolayer friction has merely quadrupled to b � 14ε 1  2m1  2σ � 3, or 5 � 4 ! 106 Pa m � 1 s,

and thus remains well below typical experimental values. The surface viscosity follows the

t5 viscosity more closely, rising by an order of magnitude to ηs " 200ε1  2m1  2σ � 1 or about

8 � 5 ! 10 � 12 Pa m s, which however still underestimates experimental values. Interestingly, the

surface viscosity also inherited the shear thinning behaviour of the t5 liquid, see Fig. 5.3. In

the simulations under parallel shear, the maximum survivable slip velocity has diminished

from 0 � 014σ � τ under regular MD to 0 � 004σ � τ with the DPD thermostat; beyond these rates

the bilayer is torn apart and either disintegrates into small bilayer patches or recombines into

a configuration perpendicular to the shear flow.

As we have seen, introducing friction and random forces does not suffice to recover the
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Figure 5.3: Surface shear viscosities obtained with the single-tail Goetz-Lipowsky model, be-

fore (triangles, dotted line) and after (circles, solid line) the introduction of pairwise-additive

friction forces, as a function of the imposed perpendicular shear rate.

experimental values for the dynamical properties of the bilayer. We are therefore led to

conclude that this single-tail CG representation is too simple to describe the dynamics of the

double-tail lipids employed in the experiments. Hence, the next stage in our work is to change

the architecture of the CG lipid to explicitly model two tails.

5.4 Double-tail lipid model

In this section on double-tailed lipids, we employ a CG model that was recently developed

by Marrink et al.[32] to simulate DPPC and related amphiphiles. These authors chose a pa-

rameterisation in which groups of about four heavy atoms, and their attached hydrogens, are

reduced to a single CG particle. Here we present a brief overview of the essentials of the

model, referring the reader to the original work[32] for an extensive motivation of the param-

eters. The model discerns four major types of particles, representing groups of atoms with

different properties: charged groups (Q), polar hydrophilic groups (P), weakly polar groups

(N) and apolar hydrophobic groups (C). The latter two types are subdivided according to
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Figure 5.4: Cartoons of the double-tailed lipids simulated with the coarse-grained model by

Marrink et al. Our short-hand notation is included below the lipids, the particle-type identifi-

cation on the left and on the right.

their ability to act as a hydrogen bond acceptor (labeled a) or their inability to form hydrogen

bonds (labeled 0). The head of a DPPC lipid (molecule A44 in Fig. 5.4) is then represented

by one Q0 particle with charge q � e for the choline group and one Qa particle with charge

q �g� e for the phosphate group. The glycerol ester linkage is modelled by two particles of

type Na, while each C16H33 tail is reduced to a chain of four C particles. Four water molecules

are lumped into one bead of type P.

The non-bonded interactions between all particles, except bonded nearest neighbours, are

described by a Lennard-Jones potential. The strength εi j of the interaction can be read from

Table 5.1; an effective radius σ � 0 � 47 nm applies to all interactions. The LJ interactions are

cut-off at a distance rc � 1 � 2 nm, using a switch function to create a smooth shift to zero be-

yond 0.9 nm. Charged particles i and j also interact by a Coulombic potential, Φel � ri j � �
qiq j � � 4πε0εrri j � , which is screened by both a relative dielectric constant εr � 20 and a

switch function running from r � 0 to rc; here ε0 denotes the dielectric constant of vacuum.

Bonded interactions between covalently connected particles are discribed by a harmonic po-

tential, Φbond � l � � 1
2 Kbond � l � σ � 2, with Kbond � 1250 kJ/mol nm2. The bending stiffness of

the tails is introduced by an angle potential, Φangle � θ � � 1
2 Kangle � cos � θ � � cos � θ0 � � 2, with

Kangle � 25 kJ/mol and θ0 � 180 d , while there is no dihedral potential. All particles have the

same mass of m � 72 a.u.. The temperature was maintained at 323 K using a Nosé-Hoover
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P Na C Q0 Qa

P 5.0 3.4 1.8 5.0 5.0
Na 3.4 4.2 2.6 3.4 3.4

C 1.8 2.6 3.4 1.8 1.8

Q0 5.0 3.4 1.8 3.4 3.4

Qa 5.0 3.4 1.8 3.4 3.4

Table 5.1: Lennard-Jones interaction parameters εi j between the five particle types of the

coarse-grained lipid model by Marrink et al.[32]

thermostat, and in some runs a Hoover barostat was invoked to establish a pressure of 1 bar.

The Verlet leap-frog algorithm allows a maximum time step of 20 fs.

To determine the dynamical properties of the aqueous solvent, we prepared a cubic box

containing 6072 P-type particles. By using a Hoover barostat and thermostat, at 1 bar and

323 K respectively, the specific weight of the solvent was found to converge to nearly 1 g/cm3.

The diffusion coefficient of the CG particles was established at DCG
water � 2 �h! 10 � 5 cm2/s, which

lies very close to the experimentally measured value for a water molecule at these conditions,

Dexp
water � 2 � 3 ! 10 � 5 cm2/s. Groot and Rabone[54] suggested that these diffusion coefficients

are related by DCG
water � Dexp

water � k, for a compound CG particle representing k water molecules.

By inserting the above numbers in this expression, with k � 4, Marrink et al.[32] concluded

that the dynamics of the simulation is too fast by a factor of four. Similar speed-up factors

were obtained by comparing the simulated molecular diffusion coefficients for liquids of

tails (Cn with n i 5) with the measured coefficients for the corresponding linear alkanes

(C4nH8n / 2), where k � 1. These authors subsequently accounted for this speed-up by simply

scaling every nanosecond of simulation time into 4 ns of real time. Although the relation

DCG
tail � Dexp

alkane should hold true for a coarse-grained molecule representing one real molecule

(k � 1), the expression for the diffusion coefficient of a compound (k 9 1) particle is less

evident: correlations between the molecules constituting the CG particle seriously complicate

the picture. Since the major purpose of the solvent particles is to provide a hydrophilic,

compressible and viscous environment to the bilayer, it is more natural to match the viscosity

rather than the diffusion coefficient of the solvent. Simulations under shear yield η CG
water "

7 ! 10 � 4 Pa s, independent of the applied shear rate. The close proximity to the experimental
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value under the prevailing conditions,[53] η exp
water � 5 � 5 ! 10 � 4 Pa s, suggests that there is no

need to introduce friction and random forces in the equations of motion of the CG solvent

particles.

The dynamics of a box of C4 tails, i.e. the CG equivalent of liquid n-hexadecane, was

analysed using a cubic box of 1518 molecules, again at 1 bar and 323 K. The simulations

yield a diffusion coefficient DCG
tail � 1 � 2 ! 10 � 5 cm2/s which is nearly twice as high as the

Dexp
alkane � 0 � 7 ! 10 � 5 cm2/s obtained by extrapolating[55] the available experimental data[55]

to the current temperature. The simulated viscosity of η CG
tail � 8 ! 10 � 4 Pa s is about half the

experimental value,[56] η exp
alkane � 1 � 9 ! 10 � 3 Pa s. This inverse proportionality between D and

η agrees with the Stokes-Einstein expression. Guided by these numbers, one would introduce

friction and random forces between the lipid particles to scale their dynamics down by a factor

of two. Since our expectations are that the double-tailed architecture will affect the flow

properties by more than the factor of two that can be gained from the friction and random

forces, we have abstained here from these additional forces. Our bilayer-solvent model is

therefore identical to the model proposed by Marrink et al.,[32] except for the omission of

the four-fold multiplication of the simulation time scale.

The starting configuration of the bilayer-solvent system was prepared by expanding a

sample box, made available by Marrink,[57] to 256 A44 amphiphiles and 3000 solvent parti-

cles. The system was equilibrated by a 100 ns simulation at constant temperature, T � 323 K,

followed by a 100 ns simulation at constant temperature and pressure, p � 1 bar. As a final

step in locating the equilibrium tensionless state, the tension-strain curve of the bilayer was

calculated by varying the ground-plane area around the final area of the NPT simulation.

The zero tension intercept of this curve, see Eq. (5.2), is reached at an area per amphiphile

of a0 � 0 � 66 nm2, which is slightly higher than the 0.64 nm2 reported by Marrink et al.[32].

This difference, as well as other small differences, are attributed to slight deviations in the

simulation setup, including a smaller time step, the rescaling of the ground plane area at con-

stant volume rather than at constant normal pressure pzz, and the use of distinct simulation

packages.

The equilibration simulations yield two additional mechanical properties of the mem-

brane, which will be needed lateron to analyse the autocorrelation of the thermal undulations.

From the slope of the tension-strain curve follows an area compressibility KA � 370 mN/m,
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as compared to the 400 mN/m obtained by Marrink et al. from area fluctuations in a barostat-

ted simulation. The structure factors of the undulations of the bilayer at A � A0 closely

adhere to the predicted scaling law, see Eq. (5.4), confirming that we have indeed reached

a state with vanishing tension, but the bending modulus of κ � 8 ! 10 � 20 J or 18kBT is

twice the value reported by Marrink et al.. Since the current small bilayer patch allows

only a few undulatory modes, the above steps were repeated with a bilayer of 6400 lipids

to confirm our original value for κ . Another independent estimate of κ is obtained by

exploiting that the compressibility defined by Eq. (5.2) is an effective area compressibil-

ity which, due to the approximate area calculation, decreases with system size according

to[40] Keff
A � ) K � 1

A  � kBT � 32π3κ2 � A0 � N � + � 1
, with KA the intrinsic compressibility defined

by Eq. (6.1); this effect explains the lower compressibility, Keff
A � 220 mN/m, observed for

the 6400 lipid bilayer. By combining the effective compressibilities of our small and large

systems, or the corresponding values reported by Marrink et al., we arrive at a bending rigid-

ity of about 12 ! 10 � 20 J, suggesting that our original value for κ is plausible. Note that the

KA obtained by this system-size correction differs by a mere 2% from the Keff
A of the smaller

bilayer, but by some 40% from the Keff
A of the larger bilayer.

The dynamical properties of the bilayer were again calculated using the procedures out-

lined in Section 6.2. By applying perpendicular shear flows with shear rates γ̇ ranging from

0.1 to 1 ns � 1, we obtained a fairly constant surface viscosity ηs � 1 � 2 ! 10 � 11 Pa m s. This

value compares well with that of the single-tail model after the addition of inter-particle

frictions, but both are one to two orders below typical experimental values. Under par-

allel shear deformations, using the aforementioned range of shear rates to induce slip ve-

locities between 0 � 01 and 0 � 25 nm/ns, we obtained an intermonolayer friction coefficient

b � 2 � 6 ! 106 Pa m � 1 s. Again, this value is in close proximity to that of the single-tail model

with inter-particle frictions, but both lie some two to three orders below experimental values.

It therefore appears that coarse grained bilayer models are not capable of quantitatively repro-

ducing the experimental dynamical properties of membranes, although they do an excellent

job on many thermodynamic properties.

In the remainder of this section two equilibrium approaches for determining ηs and b

will be applied, to validate the numerical results from the non-equilibrium simulations and

to ascertain the possible impact of shear on these parameters. A discussion on the possible
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Figure 5.5: The autocorrelations (solid lines) of the thermal undulations of a bilayer of A44

lipids, for the six smallest wave vectors commensurate with the box dimension, i.e., q �
0 � 069 Å � 1 (top), q � 0 � 097 Å � 1 (middle) and q � 0 � 137 Å � 1 (bottom). Dashed lines indicate

theoretical predictions by Eq. (5.8), where the amplitudes Ai and relaxation rates γi have

been calculated using the intermonolayer friction coefficient determined in the parallel shear

simulations.

sources of the discrepency between the experimental and simulated values of ηs and b will

be postponed till Section 5.6.

An independent conformation of the aforementioned surface viscosity is provided by the

satisfactory agreement between the lateral diffusion coefficient Dmsd � 1 � 5 ! 10 � 6 cm2/s of

a lipid in a quiescent bilayer, as determined from the mean square displacement, and the

DSaffman � 1 � 4 ! 10 � 6 cm2/s predicted by Saffman’s theory. The latter number should be re-

garded with some care, however, as the simulation conditions do not adequately match the

assumptions underlying the Saffman theory. In applying Eq. (5.6), we have approximated

the floppy lipid by a rigid cylinder of radius R � � a0 � π, and regarded the bilayer as a con-

tinuum fluid on this length scale. Since the lipids span only one monolayer, rather than the

entire bilayer, we followed previous experiments[6] and simulations[36] in substituting the

membrane surface viscosity in Eq. (5.6) by the monolayer surface viscosity, ηm � ηs � 2. Con-
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sidering the assumptions made, the agreement between the two diffusion coefficients is very

satisfactory indeed.

As described in Section 5.2.3, intermonolayer friction does not only manifest itself when

the monolayers are forceably slided along oneanother, but also during the Brownian thermal

undulations of a membrane. Figure 5.5 shows the time correlation functions of the three

undulation modes hq with the smallest wavenumbers commensurate with the box dimensions,

i.e. q1 � 2π � L � � 0 � 069 Å � 1, q2 �Gj 2q1 and q3 � 2q1. We observe a clear exponential

decay setting in after some 250 ps, especially for the smallest wavenumber. The slope of

this decay agrees well with the slow relaxation rate γ1 calculated from the theory of Seifert

and Langer, plotted here as dashed lines, thus confirming the value of the intermonolayer

friction coefficient. Only one parameter in this theory could not be determined a priori from

an independent simulation, to wit the distance d between the midsurface of the bilayer and

the neutral surfaces of the monolayers.[39] We judiciously chose this distance to be equal

to half the monolayer thickness, i.e., a quarter of the bilayer thickness, d � h � 4 " 1 � 1 nm,

a choice which has worked out well in the past.[37, 42] In summary, we have seen that

the dynamical properties calculated from non-equilibrium simulations are confirmed by the

equilibrium simulations. The latter are more time consuming and less straightforward in their

interpretation, hence we recommend the non-equilibrium simulations as the more practical

methods.

5.5 Lipid architecture

In this section, the lengths of the hydrophobic tails in the Marrink model will be varied to

investigate their influence on the dynamical properties of the bilayer. First to be discussed are

asymmetric amphiphiles, whose distinct tails contain a combined total of 8 particles. Next are

symmetric amphiphiles with elongated tails, and finally we briefly mention a lipid with one

straight and one bend tail. Each simulated tension-less bilayer contains 256 identical lipids,

and is surrounded by 3000 solvent particles. All tail particles are, as before, of the A type.

The effect of asymmetric tail lengths was studied by comparing the reference A44 lipid

to its cousins A53 and A62, see Fig. 5.4. After equilibrating the membranes and exposing

them to shear, we found that the three lipids yield nearly identical surface viscosities, which
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Figure 5.6: The surface shear viscosity as a function of the shear rate for the A44 lipid (circles

and solid line), two lipids with asymmetric tails (quadrangles), three lipids with extended

tails (triangles and dotted lines), and the A5 k 5 lipid (pluses). Viscosities obtained from the

lipid lateral diffusion coefficients, by means of the Saffman theory, are plotted at γ̇ � 0.

in Fig. 5.6 are seen to be independent of the shear rate. The viscosities derived by means

of the Saffman expression from the lateral diffusion coefficients of lipids in non-sheared

bilayers, which are represented in the plot by the markers at γ̇ � 0, confirm this result. The

intermonolayer friction, however, rises with increasing tail length difference, see Fig. 5.7.

Because the equilibrium area a0 and membrane thickness h are only slightly different for

the three lipids, we attribute this rise to the packing of the tails inside the hydrophobic core

of the bilayer. The probability distributions of the amphiphilic particles along the normal

to the membrane, as presented in Fig. 5.8 for the three lipids, indicate that the tails of the

opposing leaflets are not interdigitated for the A44 lipid. The long tails of the A53 lipids

interdigitate by about 1 particle with their counterparts from the opposing leaflet, and those

of A62 by about 3 particles. Note that the peaks of the particle distributions have shifted with

increasing asymmetry, thereby reducing the actual number of interdigitating particles to less

than the values of 2 and 4 which one would have expected for A53 and A62, respectively, on

simple geometric grounds. Obviously, the enhanced number of inter-leaflet contacts created
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Figure 5.7: The intermonolayer friction coefficient as a function of the slip velocity for the

A44 lipid (circles and solid line), two lipids with asymmetric tails (quadrangles and dotted

lines), three lipids with extended tails (triangles), and the A5 k 5 lipid (pluses). Friction coeffi-

cients obtained from the relaxation rate γ1 of the thermal undulations, by means of the theory

by Seifert and Langer, are plotted at ∆v � 0.

by interdigitation strengthens the interaction between the two monolayers and is responsible

for the growth of the intermonolayer friction with increasing asymmetry. The intermonolayer

friction coefficients were also deduced from the slow relaxation rates γ1, see Eq. (5.8), of the

thermal bilayer undulations with the smallest wavenumber, q � 2π � L � . The small differences

between these friction coefficients, indicated in the graph by the markers at ∆v � 0, and those

calculated for the lowest slip velocity can be accounted for by several causes. In the Seifert-

Langer theory, the idea of a smooth midsurface where the monolayers slide past oneanother

becomes obscured with increasing tail asymmetry, and the assumption d � h � 4 might be less

well founded. Sampling deficiencies of the timecorrelation functions were minimized by

prolonging the lengths of all simulations beyond tsimu l 50γ � 1
1 . In the shear simulations with

the lowest shear rates it is difficult to extract an accurate slip velocity ∆v and solvent shear rate

γ̇w, see Eq. (5.7), because the motions of the amphiphilic and solvent particles, respectively,

are dominated by thermal noise rather than by the collective shear flow. Nevertheless, the
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Figure 5.8: Probability distributions of the amphiphilic particles along the bilayer normal,

for A44 (bottom), A55 (middle) and A62 (top), with the particles of the first (long) tail as

solid lines, the particles of the second (short) tail as dashed lines, and the head particles as

dash-dotted lines. The terminal and interdigitating particles are marked by dark lines, while

light lines are used for the remaining tail particles. The asymmetric lipids form a so-called

partially interdigitated bilayer, in which a long tail packs end-to-end with a short tail from the

opposing leaflet.
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simulations clearly indicate that the intermonolayer friction coefficients are independent of

the slip velocity.

In the simulations of symmetric lipids we compared the reference lipid A44 against three

lipids with longer tails: A55, A66 and A77. Along this series of lipids, the equilibrium di-

mensions of the bilayer gradually grow according to ao �[� 0 � 655  0 � 009i � nm2 and h �� 19  6i � Å, with i the number of particles per tail. The ratios of bending rigidity to elastic

modulus are well fitted by � κ � KA � 1  2 � α � h � h0 � , with α � 0 � 16 and h0 � 1 � 2 nm, in good

agreement with the α � 1 � j 24 and h0 � 1 nm obtained by the experiments and theory of

Rawicz et al.[58] Simulations under parallel shear revealed that the intermonolayer friction

coefficients vary by less than 50% between the four lipids, see Fig. 5.7. Because both tails

are of equal length, the monomer distributions along the bilayer normal are similar to that

of the A44 membrane discussed before, and there is no interdigitation of tails from opposing

leaflets. The distributions of the extremal tail particles become wider with increasing tail

length, and the distances between their peaks reduce, which suggests a slightly rougher in-

terface and hence a higher intermonolayer friction for the longer tails. This trend is indeed

observed at the slip velocity of 0.25 nm/ns, but curiously the friction coefficients obtained

from the thermal undulations are sorted in the reverse order.

The surface shear viscosities of bilayers with symmetric lipids rises rapidly with increas-

ing tail length, see Fig. 5.6, as is to be expected when the number of lateral interactions

between neighbouring lipids increases. For the A44 and A55 lipids the surface viscosity is vir-

tually shear-rate independent, and there is a good agreement between the results of equilib-

rium and non-equilibrium simulations. A pronounced shear-thinning is observed for bilayers

with the longer A66 and A77 lipids. The shear-thinning is probably caused by the ordering

of the lipids in the bilayer, and perhaps enhanced by flow-induced ordering, because the

bulk tail liquids, Ci with 4 i i i 7, behave like Newtonian liquids over the same range of

shear rates. Interestingly, the shear viscosities of these liquids are linear in the tail length,

ηtail �`� 4i � 8 � ! 10 � 4 Pa s. The lipids with long tails also reveal a discrepancy between the

viscosities at low shear rates and those derived from diffusion coefficients by the Saffman

theory, which indicates that the limits of this theory have been reached.

In our final lipid model, denoted as A5 k 5, a mono-unsaturated tail is mimicked by re-

ducing the equilibrium angle at the central particle of the tail to θ0 � 130 d and by stiffen-
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ing the bending potential of this particular angle to Kangle � 250 kJ/mol. The impact of the

boomerang-shaped tail is modest; Figs. 5.6 and 5.7 show that the surface shear viscosity and

the intermonolayer friction coefficient, respectively, have increased only slightly relative to

its closest saturated counterpart, the A55 lipid.

5.6 Discussion and conclusions

The flow properties of bilayer membranes have been studied, for a variety of coarse grained

lipid models, using molecular dynamics simulations. Surface shear viscosities ηs were cal-

culated from simulations of bilayers exposed to a perpendicular shear, and from the lateral

self-diffusion of the lipids by means of Saffman’s theory. Intermonolayer friction coefficients

b were obtained from bilayers under parallel shear, and from the relaxation rates of thermally

undulating bilayers using the theory by Seifert and Langer. The generally good quantitative

agreement between the results of the equilibrium and non-equilibrium simulations is inter-

preted as support for the two aforementioned theories.

The single-tail coarse-grained lipid model by Goetz and Lipowsky has been extended

here with pairwise additive friction and random forces, because the bilayer dynamics ob-

tained with the original model was considerably faster than that of experimental bilayers.

Although the model now reproduces the experimental viscosities of water and liquid alkanes,

the slowing down of the bilayer dynamics is insufficient to recover quantitative agreement

with experimental data. Interestingly, the surface shear viscosity and intermonolayer friction

coefficient are of the same order of magnitude as those obtained with the double-tailed lipid

model recently introduced by Marrink et al.. Our variations on the latter model, by changing

the tail lengths and introducing asymmetry, achieve only a five-fold increase of ηs and b.

We are therefore led to believe that the reported values are generic for coarse-grained lipid

models.

A layer of bulk liquid with viscosity ηl and thickness h is readily shown to posses a

‘surface’ shear viscosity ηs � ηlh under perpendicular shear flow and a ‘friction’ coefficient

b � ηl � h under parallel shear flow, where in the latter case the velocity difference over the

layer is interpreted as 2∆v. By comparing the bilayers with symmetric lipids against these

rules of thumb, we find that the low shear-rate results are adequately described by ηs "
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3ηtailh and b " 12ηtail � h, with ηtail the viscosity of a bulk liquid of tails. The prefactors

appearing in these expressions reflect that the bilayer is not a simple bulk liquid of tails,

but that the lipids are ordered in a bilayer structure. Experimental data yield prefactors of

the order of 100 to 1000, with the intermonolayer friction requiring a higher prefactor than

the surface viscosity,[14] suggesting that the impact of ordering on ηs and b is considerably

higher for real lipids than for the coarse-grained model lipids studied here. We suspect that

these differences are caused by the weakness of coarse-grained models to accurately mimic

the detailed interactions between alkanes, and hence their packing in dense phases. This is

also illustrated by the viscosities of the bulk Ci liquids, which we found to be linear in the

length i for chains of 4 to 7 particles. The experimental viscosities,[56] however, rise rapidly

with increasing chain length, whilst n-tetracosane (i � 6) and longer linear alkanes are in

a wax-like state at the simulation temperature of 323 K. In the ordered bilayer structure a

similar transition is observed at an even lower tail length, with DPPC (i � 4) in the liquid-

crystalline phase and DSPC (i � 4 � 5) in the gel phase at 323 K. The coarse-grained lipids,

for which no chain-length induced transitions were observed, are apparently less sensitive

to ordering and dense packing effects, which also explains their relatively low surface shear

viscosity and intermonolayer friction coefficient. A quantitative reproduction of the flow

properties of membranes by computer simulations probably requires an atomistically detailed

model.

By varying the tail lengths of a double-tailed lipid, we observe two clear trends for the

flow properties of bilayers. The intermonolayer friction coefficient is sensitive to the asymme-

try of the tails, which roughens the interface between the two monolayers by interdigitation

of the longer tails. The surface shear viscosity is modulated by the combined lengths of the

two tails, and hardly varies with the asymmetry of the tails. In view of the above reservations

on the accuracy of the CG model, it is not evident whether bilayers of real lipids will dis-

play similar behaviour. The experimental data at our disposal are inconclusive in this respect.

Finally, we express the expectation that the current work inspires future experimental and

simulation studies on the flow properties of bilayers in relation to their lipid composition.
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6
Buckling and persistence

length

of an amphiphilic worm

from molecular dynamics

simulations

A worm-like micelle of coarse-grained amphiphilic molecules is simulated with

molecular dynamics. We demonstrate that our worm is inherently stable, i. e.

it does not depend on periodic boundary conditions for its continued survival,

which sets it apart from some, and perhaps even all, previously simulated worms.

The worms are observed to buckle under sufficiently strong compression forces.

The persistence length and bending rigidity follow from analysing the thermal

undulations of a tensionless worm. System size dependencies of the elastic mod-

ulus of the worm, as reported for amphiphilic bilayers, are eliminated by explic-

itly calculating the arc length of the worm. �
6.1 Introduction

Amphiphilic molecules in water spontaneously assemble into aggregates ranging from near-

spherical micelles and cylindrical worm-like micelles to bilayers and vesicles.[2] This pro-

cess is driven by a minimisation of the exposure to the water of the hydrophobic tails of

the amphiphiles, by shielding them with the hydrophilic heads. The size and shape of the

aggregates depend on a number of parameters, including the chemical composition of the

amphiphile (charge and relative size of the head group, one or two tails, flexibility of the

tails), the concentration and the presence of counter ions. No chemical bonds are formed

within the aggregates, hence they behave as one dimensional (worm) or two dimensional� The work described in this chapter previously appeared in J. Chem. Phys. 119, 2363 (2003) [1].
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(bilayer) liquids of amphiphiles, and they break up and regroup relatively easily.

Computer simulations have proven very useful in advancing our understanding of the

properties of amphiphilic aggregates. Molecular dynamics simulations in full atomic splen-

dour require a large number of atoms and a powerful computer; many simulations therefore

resort to coarse grained models in which a molecule is represented by a small number of

beads. [3] A number of such studies have concentrated on the spontaneous growth pro-

cess. Randomly distributed surfactant molecules were observed to assemble into micelles,

worms or bilayers, depending on their concentration. [4, 5] Because of their relevance

as cell membranes in biological tissues, most simulation studies to date concern bilayers.

[4, 6, 7, 8, 9, 10, 11, 12] Simulations of worms are exceedingly rare: they have been ob-

served by a number of authors, [4, 5, 13, 14] and most were found to last for the course of the

simulation in boxes with periodic boundary conditions, but no discussion of their mechanical

properties exists.

This absence is all the more striking considering the widespread interest in industry in the

rheological properties of solutions containing worm-like micelles.[15] In the oil producing

industry, for instance, amphiphilic solutions are considered a viable and environmentally

acceptable alternative for the currently used fracturing fluids.[16] The visco-elasticity of the

solution is to a large extent determined by the mechanical properties of the worms, i. e. their

bending rigidity and elastic modulus, and their capacity to break up under high tension and

to reconnect under reduced tension conditions.[15] The ability to calculate these properties

from the molecular structure of the amphiphile will make a significant contribution to the

understanding of the viscoelastic properties of these fluids. These data can then be used

as the input of a coarse model, in which the entire worm is regarded as a chain of beads

connected by springs that allow for scission and recombination, from which the rheological

properties are obtained. Although simulations of worms on this level have been discussed

by a number of authors,[17, 18] it has never been tried to calculate the characteristic input

parameters from the underlying molecular model.

In this contribution we calculate the mechanical properties of a coarse-grained model

surfactant. The Helfrich model by which these properties are defined is discussed in Sec-

tion 6.2. In Section 6.3 Lipowsky’s model of the amphiphile is introduced. The problems

that arise when using this parameter set for a worm-like micelle are discussed, and an expe-
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dient is presented. The simulation results obtained with the modified potential are presented

in Section 6.4, and discussed in Section 6.5.

6.2 Theory

A worm of N molecules is oriented parallel to the z-axis of a periodic simulation box of height

L � and a square ground plane with sides L � . Regarding the worm as a single smooth line,� x � z � 
 y � z � 
 z � , with z the independent parameter, the local curvature at every point along the

line is readily expressed in terms of the second derivatives of x and y with respect to z. The

bending free energy then is proportional to the line integral of the squared curvature,

fbend � x 
 y � � κ
2

� L m
0
% ∂ 2x

∂ z2 & 2  % ∂ 2y
∂ z2 & 2

dz, (6.1)

with κ the bending rigidity. The undulations of the worm are conveniently expanded in a

Fourier series,

x � z � � x0  ∑
n n\ 0

cx 8 n exp � iqnz � , (6.2)

with wave number qn � 2πn � L � , and n running over both positive and negative integers, but

excluding zero. The realness of x implies that cx 8 � n � c �x 8 n. Similar expressions apply to y � z �
and cy 8 n. Any deviation of the curve length L from its equilibrium value L0 also contributes

to the free energy, with half the elastic modulus KL acting as the proportionality constant. To

lowest order in the Fourier coefficients, the free energy of a given configuration thus reads in

the Helfrich model as

f � U cx 8 n V 
 U cy 8 n V � � 16π4κ
L3� ∑

n o 1
H C cx 8 n C 2  C cy 8 n C 2 I n4  KL

2L0 � L � L0 � 2, (6.3)

where the arc length L still is a function of L � and the Fourier coefficients. The total free

energy F of the worm follows by integrating over all possible configurations,

F �:� kBT ln p �;� exp �q� β f � x 
 y � � DxDy r , (6.4)

with Boltzmann’s constant kB, temperature T and β � 1 � kBT . Unfortunately, this expression

is too difficult for a direct evaluation, so an alternative route is needed to arrive at the desired

mechanical properties of the worm.
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Under elongation or compression, C L � L0 C P 0, the free energy F is dominated by the

elastic term. Neglecting the bending term altogether, the free energy change under a box

deformation at constant volume, V � L � L2� , reads as� ∆p
V
L � � % ∂F

∂L � & N 8V 8 T " KL

L0 � L � L0 � ∂L
∂L � . (6.5)

The left hand side follows from the usual thermodynamic definition of the pressure as a free

energy derivative, with ∆p � pzz � 1
2 � pxx  pyy � and pi j the stress tensor. The worm is said

to be in the tension-less state when ∆p � 0, so L � L0 and L � � L � 0. Under these conditions

the stretching free energy vanishes in Eq. (6.3). As the remaining bending free energy is

quadratic in its arguments, all modes are decoupled and so are the real and imaginary parts of

their Fourier coefficients. The equipartition theorem then states that the structure factors of a

tension-less worm scale as

Sx � n � ��s C cx 8 n C 2 t � 2 s Re2 � cx 8 n � t � kBT
L � κ q � 4

n . (6.6)

Similar expressions hold for Sy � n � and for the imaginary parts. An observation of Eqs. (6.5)

and (6.6) in our simulations would validate the above derivation, and yield the desired me-

chanical properties. The first to succesfully use this kind of approach were Goetz, Gompper

and Lipowsky[9] in their study of a bilayer. Note that in the case of bilayers it is standard

practice to equate the area of the bilayer to the area of the ground plane of the simulation box.

[4, 7, 9, 10, 11, 12] For the worm, this assumption would translate into L � L � and� ∆p
V
L � � KL

L � 0 � L � � L � 0 � . (6.7)

We stress, however, the importance of distinguishing between L and L � , for reasons that will

become apparent below.

The average arc length of the tensionless worm follows from averaging the well-known

expression for the length of a curve,

L0 � D � L m 0
0 u 1 v% ∂x

∂ z & 2 v% ∂y
∂ z & 2 w 1  2

dz

E
" L � 0  4π2

L � 0 ∑
n o 1

n2 H s C cx 8 n C 2 t  s C cy 8 n C 2 t I . (6.8)

116



6. BUCKLING AND PERSISTENCE LENGTH OF AN AMPHIPHILIC WORM
FROM MOLECULAR DYNAMICS SIMULATIONS

In the last step we Taylor expanded the square root, inserted the Fourier expansions of x � z �
and y � z � , and integrated over z using the orthogonality of the basis set. For the averages we

now substitute Eq. (6.6). The resulting summation converges to

L0 � L � 0  L2� 0 kBT
12κ

, (6.9)

in the (unphysical) limit of n going to infinity.

6.3 Simulation details

The simulation model we used is based on the model of Goetz et al.[4, 9] An amphiphilic

architecture is chosen in which the head is represented by a single bead (h) and the tail is

reduced to four beads (t) representing roughly three CH2 units each. The solvent consists

of loose water beads (w) roughly representing two water molecules. Interactions between

like particles, as well as the hydrophilic head-water interactions are modelled by a Lennard-

Jones potenial, ΦLJ
i j � r � � 4ε � � σi j � r � 12 �x� σi j � r � 6 � . The hydrophobic tail-water and tail-head

interactions are modelled by a purely repulsive potential, Φrep
i j � r � � 4ε � 1 � 05σi j � r � 9. In the

original parameter set all six diameters σi j are identical to σ . The non-bonded forces are

implemented in a shifted-force fashion, ensuring a smooth truncation of the energy and the

force at the cut-off distance of 2 � 5σi j. All particles have the same mass m. Consecutive beads

in an amphiphile are held together by harmonic springs, Φbond
i j � r � � 5000εσ � 2 � r � σi j � 2,

while there are no bending or dihedral potentials. A Nosé-Hoover thermostat maintains a

temperature of T � 1 � 35ε � kB, the density is fixed at 2 particles per 3σ 3. The time step

is τ � 2000, with τ � � mσ 2 � ε the unit of time. Simulations were run using version 2.0

of the DL POLY package.[19] A link to experimental values is achieved by σ � 1 � 3 nm,

ε � 2 kJ/mol and m � 36 g/mol, in which case T � 325 K.[4] These conversion factors only

serve as a rough indication, and are not meant to be definitive.

Using this parameter set, Goetz et al.[4] observed the spontaneous formation of worms

from random solutions. We prepared a simulation box of a size comparable to theirs (N � 90,

L � � 12σ and L � � 18 � 2σ ) with the amphiphiles neatly arranged in a cylindrical configura-

tion. After a prolonged equilibration, the worm-like structure proved to survive in a periodic

box with fixed dimensions. We noticed, however, a considerable pressure difference ∆p be-

tween the parallel and perpendicular directions, indicating that the worm wanted to contract.
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To reduce this line tension, we ran simulations with a modified Berendsen barostat[20] which

scaled the box side L � every time step by a factor proportional to the pressure difference. The

two perpendicular sides L � were scaled simultaneously, keeping the total volume of the box

fixed. During the relaxation the parallel axis gradually diminished, while the worm turned

into a flattened worm, and eventually became a bilayer. Having observed this behaviour in a

number of boxes with different sizes and concentrations, we concluded that the current pa-

rameter set is not able to form a stable worm. The formation of worm-like structures from

random starting configurations in boxes of fixed dimensions, and the longevity of these struc-

tures, are an artefact of the periodic boundary conditions. On the basis of these results we

speculate that other simulations in which worms have been observed may be hampered by the

same problem. A related interesting discussion of boundary effects on the micelle to worm

transition appears in Marrink et al.[5]

To stabilise the worm, we tapered the amphiphiles by increasing the size of the head

groups, σhh, at constant σtt and σww. The combination rule σi j � j σiiσ j j was applied to

interactions between unlike particles. Runs at several values of σhh indicated that head par-

ticles with a volume of at least four times that of tail particles, i. e. σhh � 3j 4σ , are needed

to yield an inherently stable worm. For a box of 90 amphiphiles and 2192 water particles,

the manostated simulation then converged to a stable tension-less worm with L � " 13 � 5σ . As

a further test, we ran simulations with non-periodic amphiphilic aggregates, i. e. aggregates

which were terminated by caps or an edge because the box was too large to permit periodic

structures. Starting configurations were made either by hand, or by self-assembly from a ran-

domly dissolved box. In each case, we observed stable cylindrical structures for the potential

with the enlarged head groups. The original amphiphiles, on the other hand, always formed

flattened micelles and disk-like bilayers.

An alternative route to making cone-shaped amphiphiles would be to retain the original

parameter set, but to increase the number of head particles. The linear h2t4 amphiphile is

hardly more conical than the original ht4, and therefore does not yield a stable worm either.

But a “forked” h2t4 molecule, with both heads bonded to the first tail particle and to onean-

other by the aforementioned Φbond
i j � r � , does form stable worms. We have not pursued this

type of molecule any further, though it would be interesting to investigate how this asymmet-

ric head group affects the ordering and dynamics of amphiphiles within a worm.
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Figure 6.1: Snapshot of a micellar worm of 450 amphiphiles in the tension-less state. The

surrounding solvent particles are not shown.

About two dozen simulation boxes were made, ranging from 90 upto 450 amphiphiles

arranged in a cylindrical shape, with box lengths distributed around their anticipated equilib-

rium lengths. Each box had the same amphiphile to solvent ratio. The boxes were thoroughly

equilibrated, followed by production runs of at least 10 million steps. A typical configuration

is shown in Fig. 6.1. By evaluating the mean square displacements of some runs, we verified

that the amphiphiles in these worm still move as in a two dimensional liquid confined to a

cylindrical surface.

In order to apply Eq. (6.6) to the modes of an undulating worm, one needs to extract the

Fourier coefficients from the particle coordinates � xi 
 yi 
 zi � . We divided the box into J slabs

perpendicular to the z axis, calculated the averaged coordinates X j � � xi � j and Y j � � yi � j

of all amphiphilic particles (heads and tails) in the jth slab, and applied an inverse Fourier

transform to the resulting � X j 
 Yj 
 Z j � , with Z j �v� j � 1
2 � L � � J the equidistant centres of the

slabs. The sum of the distances between these points served as our estimate of the arc length

of the worm. The ensuing Sx � n � and L were verified to be virtually independent of the number

of slabs over a range of J-s.

6.4 Results

As explained in Section 6.2, our first objectives are the elastic modulus and the tensionless

state. Figure 6.2 shows the calculated pressure differences as a function of the box height.
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Figure 6.2: Pressure difference ∆p between the directions parallel and perpendicular to the

worm, as a function of the height L � of the simulation box, normalised by the number of am-

phiphiles N. Note how the pressures, i. e. the forces opposing compression, reach a maximum

for the long worms.

The linear relationships observed for the smaller boxes of 90 and 180 amphiphiles agree with

Eq. (6.7). But the different slopes and intercepts suggest that the elastic modulus KL and the

average length per amphiphile l � 0 � L � 0 � N decrease as the system size increases. Similar size

dependencies have been reported for the elastic modulus and equilibrium area of bilayers, [11,

12] where an approximation analogous to L � L � is used. Although a system size dependency

of KL as defined by Eq. (6.7) does not come entirely unexpected, the undulations could for

instance still play a minor role, the basic idea behind the Helfrich model is that the elastic

modulus KL is truly constant. For bigger worms the pressure difference is no longer linear

in the box height, but reaches a plateau under compression. Again, large bilayers behave in

a similar fashion.[21] These findings clearly disagree with Eq. (6.7), and the question rises

whether the assumptions made in the derivation of that expression are justified.

In Fig. 6.3 the arc length of the worm is plotted against the height of the box. Under

elongation, the arc lengths of all worms are linear in the box height, with slopes approach-

ing unity, ∂L � ∂L � " 1. The plot also shows that short worms are truly compressible, their
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Figure 6.3: Average arc length of the worm versus the box height, for a number of system

sizes. The long worms clearly buckle under compression, while the short worms behave

almost elastically.

arc lengths steadily diminish with L � , while the arc lengths of the longer worms eventually

stabilise. This constant length, the constant pressure, and the large undulations observed in

snap shots of the system, all indicate that the longer worms buckle under compression. By

plotting the pressure difference against the arc length in Fig. 6.4, we see that all data points,

including those from the buckled worms, coalesce to a single straight line. From the slope of

this line we obtained the elastic modulus KL � 46ε � σ or 4 � 6 ! 10 � 10 J/m and the equilibrium

length per amphiphile l0 � 0 � 154σ or 0 � 51Å. Both are clearly independent of the system size,

as predicted by the Helfrich model.

The structure factors of three tension-less worms are presented in Fig. 6.5. At low wave

numbers the smallest box shows the start of the q � 4 regime predicted by Eq. (6.6), which

becomes more pronounced in the larger boxes. The coalescence of three simulations onto a

single curve indicates that the bending rigidity is essentially independent of the system size

(on this length scale, at least). At large wave numbers the structure factors start sampling the

local structure of the worm, rather than a smooth overall curvature, giving rise to a departure

from theory. From the fit follows a bending rigidity of κ � 52εσ or 5 � 8 ! 10 � 29 J m. The
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Figure 6.4: Pressure difference ∆p between the directions parallel and perpendicular to the

worm, as a function of the arc length L of the worm, normalised by the number of amphiphiles

N.

corresponding persistence length[22] Lp � κ � kBT � 38σ or 130 Å lies at the lower end of

the experimentally observed range of 150 Å to 1500 Å.[23] Note that these conversions of σ

and ε to ‘real’ values are only an order of magnitude estimate. Figure 6.6 shows how this κ

also leads to a good agreement between the averaged actual curve length and the prediction

of Eq. (6.9).

In the theory of elasticity it is derived that a homogeneous isotropic bar is straight under

small compression forces, but buckles under the Euler force,[24] FE � π2EI � L2� . The product

of Young’s modulus E and the second moment I plays the role of the bending rigidity, κ � EI.

This approximate result also follows from the Helfrich expression, under the assumptions that

the arc length is constant, L � L � ( L � , and there is just one mode with a wave length equal

to twice L � . In a periodic system the box height corresponds to the full wave length of the

first mode, hence the buckling force is four times bigger,

FE � 4π2κ� L � � N � 2 N � 2. (6.10)

In worm-like micelles curvature already plays an important role before the system buckles,
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Figure 6.5: Structure factors of three worms in the tensionless state. The fit corresponds to

Eq. (6.6).

unlike for rods. The structure factors of a simulated buckled worm still follow the tension-less

distribution of Eq. (6.6) with the same κ , except for the first mode, whose average amplitude

has increased. According to Fig. 6.3 the arc length is constant. This suggests that the above

assumptions still hold, with the first mode bearing the brunt of the compression force. Fig-

ure 6.7 shows that the pressure difference on buckled worms with the same value of L ��� N
is indeed linear in N � 2. The proportionality constant is in good agreement with the predic-

tion, which is surprising considering that the above derivation neglected the compressibility

of the worm, the presence of other modes besides the first, and the perpetual fluctuations.

Interestingly, the fit indicates that a worm of about 650 amphiphiles, or L0 " 2 � 7Lp, already

“buckles” under zero pressure. Also, for even longer worms the pressure difference will be

negative over a very wide range (and possibly even the entire range) of values of L � . This

suggests, in our opinion, that beyond this length scale the worm effectively starts to behave

as a (short) flexible polymer, with ends that attract oneanother at all distances for entropic

reasons.[25]
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Figure 6.6: The equilibrium arc length as a function of the equilibrium box height. The

continuous line shows the theoretical prediction of Eq. (6.9) using the bending rigidity from

Fig. 6.5, the dotted line represents L0 � L � 0.

6.5 Discussion

A number of authors have observed the spontaneous emergence of worm-like micelles from

initially randomly distributed amphiphilic solutions in simulations with periodic boundary

conditions. On the basis of a detailed study of one of these worms, we argue that these obser-

vations by themselves are insufficient to support the conclusion that the parameter sets used

are capable of forming worms. To distinguish between truly stable worms and thinly-pulled

taut bilayers, one has to find a state of zero line tension, either by adjusting the dimensions of

the periodic simulation box or by making a non-periodic worm (with two endcaps). We have

shown that the parameter set used in the Lipowsky model meets these stability criteria only

after a fourfold increase of the volume of the head particle.

The averaged thermally-excited structure factors of a tensionless worm in a periodic sim-

ulation box scale with the wave number according to S ∝ q � 4, as predicted by the Helfrich

model. From the proportionality constant the bending rigidity and persistence length are

obtained. Under elongation stress the scaling exponent decreases rapidly, reaching -3.1 at
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Figure 6.7: The pressure difference of buckled worms, at L � � N � 0 � 122. The slope is calcu-

lated from the prediction of Eq. (6.10), the intercept is fitted.

L � � 1 � 08L � 0 and -2.5 at 1.2L � 0 (the Helfrich model predicts -2 for κ � 0), providing an

additional test for the stability of the worm.

We observed pronounced differences between the worms response to elongation and com-

pression. When stretched, the undulations of all modes decrease, the contour length increases,

and the line tension becomes linear in the height of the simulation box. Under strong com-

pression the undulations of only the first mode increase, while the contour length and the

line tension reach a plateau value: the worm buckles. The transitions to these plateaus are

very smooth, and their onset and heights vary with the system size. An extrapolation of the

buckling pressure suggests that worms of several times the persistence length are always in

a highly undulating crumpled or coil-like state. Despite these differences between compres-

sion and elongation, we find that both cases agree well with the Helfrich model, provided the

length of the worm is properly calculated as the arc length, rather than approximated by the

height of the simulation box. The elastic modulus, equilibrium length per amphiphile and the

bending rigidity are all indepent of the system size.
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Summary

The dynamical properties of membranes, i.e., lipid bilayers, in aqueous solvent have been

investigated by means of coarse-grained molecular dynamics simulations. Because of their

amphiphilic nature, lipids dissolved in water can form a wide range of clusters, from spherical

globules and worm-like micelles to bilayers and vesicles, where the hydrophobic tails of the

lipids are shielded from the surrounding solvent by their hydrophilic heads. The particular

lipids simulated here self-assemble into a bilayer-structure, which is mirror symmetric with

respect to its mid-plane. Because bilayers are held together by relative weak non-bonded

interaction forces, they behave in many respects as two-dimensional liquids suspended in a

three-dimensional solvent matrix. This makes bilayers very susceptible to external forces,

which give rise to deformations of the overall shape of the bilayer and to flow within the

bilayer.

The main goal of the current investigation is to establish methods to determine both the

surface shear viscosity and the intermonolayer friction coefficient of the bilayer by means of

computer simulations on the molecular level. The methods are tested using two well-known

contemporary coarse-grained amphiphilic models by Goetz and Lipowsky and by Marrink et

al..

In chapter 2 the coarse-grained model bilayer was exposed to two shear flows directed

along the bilayer surface. The first field, with a vorticity perpendicular to the bilayer, in-

duces a regular shear deformation in the bilayer. The resistance of the bilayer against this

flow is characterized by a two-dimensional surface viscosity, which, analogous to the three-

dimensional viscosity, relates the shear force per unit of length of bilayer to the shear rate. The

second flow field, with a vorticity parallel to the bilayer, causes the two constituent monolay-

ers to slide past one another. A friction coefficient is defined by the ratio between the sliding

force per unit of bilayer area and the velocity difference between the two monolayers.

The main results of chapters 3 and 4 are a confirmation of the theory by Seifert and

Langer describing the relaxation dynamics of undulations in lipid bilayers, and the conclu-

sion, illustrated by the presented molecular dynamics simulations, that at length scales below� 0 � 1µm the relaxations are dominated by intermonolayer friction. The relaxation times
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that follow from these equilibrium simulations confirm the intermonolayer friction coeffi-

cient deduced from the non-equilibrium simulations in chapter 2. An accurate estimate of

the intermonolayer friction coefficient is not only interesting by itself, as a key parameter in

a study on bilayer dynamics, but also because of its indirect, and hitherto largely unappreci-

ated, consequences for the calculation of bilayer bending rigidities, and possibly also other

static properties, by molecular dynamics simulations.

In chapter 5, the single-tail coarse-grained lipid model by Goetz and Lipowsky has been

extended with pairwise-additive friction and random forces, because the bilayer dynamics

obtained with the original model was considerably faster than that of experimental bilayers.

Although the model now reproduces the experimental viscosities of water and liquid alkanes,

the slowing-down of the bilayer dynamics is insufficient to recover quantitative agreement

with experimental data. A similar discrepancy was observed for the double-tailed coarse-

grained lipid model by Marrink et al.. By varying the tail lengths we observe two clear

trends for the flow properties of bilayers. The intermonolayer friction coefficient is sensitive

to the asymmetry of the tails, which roughens the interface between the two monolayers by

interdigitation of the longer tails. The surface shear viscosity is modulated by the combined

lengths of the two tails, and hardly varies with the asymmetry of the tails. Experimental

data to compare these results against are rare, and we express the expectation that the current

work inspires future experimental and simulation studies on the flow properties of bilayers in

relation to their lipid composition.

In chapter 6 we use molecular dynamic simulations to calculate the mechanical properties

of a coarse-grained amphiphilic worm-like micelle. First of all we demonstrate that our

worm is inherently stable, i.e., it does not depend on periodic boundary conditions for its

continued survival, which sets it apart from some, and perhaps even all, previously simulated

worms. We have shown that a force field based on the Lipowsky model, as used in the

simulations, meets the stability criteria only after a fourfold increase of the volume of the

head particle. The averaged structure factors of a thermally-excited tensionless worm in

a periodic simulation box scale with the wave number according to S � q � 4, as predicted

by the Helfrich model. The persistence length and bending rigidity are obtained from the

proportionality constant. We observed pronounced differences between the worm’s response

to elongation and compression. When stretched, the undulations of all modes decrease, the
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contour length increases, and the line tension becomes linear in the height of the simulation

box. Under strong compression the undulations of only the first mode increase, while the

contour length and the line tension reach a plateau value: the worm buckles. Both cases

agree well with the Helfrich model.
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Samenvatting

De dynamische eigenschappen van membranen, oftewel lipide bilagen, opgelost in water

zijn onderzocht met gecoarse-grainde moleculaire dynamica simulaties. Door hun amfifiele

karakter kunnen lipiden in water een breed scala aan clusters vormen, van bolvormige en

worm-achtige micellen tot bilagen en vesicles, waarbij de hydrofobe staarten van de lipi-

den worden afgeschermd van het omringende water door hun hydrofiele koppen. De lipiden

die hier worden gesimuleerd zelf-assembleren in een bilaag structuur, met spiegelsymme-

trie in het midvlak. Omdat bilagen door relatief zwakke niet-covalente interactiekrachten bij

elkaar worden gehouden gedragen ze zich in veel opzichten als twee-dimensionale vloeistof-

fen gesuspendeerd in een drie-dimensionale achtergrond vloeistof. Dit maakt bilagen erg

gevoelig voor externe krachten, die gemakkelijk deformaties van de globale vorm en stro-

mingen binnen de bilaag veroorzaken.

Het hoofddoel van dit onderzoek is om methoden te ontwikkelen om zowel de oppervlakte

afschuifviscositeit als de intermonolaag frictiecoëfficiënt van een bilaag te bepalen middels

computersimulaties op het moleculaire niveau. De methoden zijn getest met twee bekende re-

cente gecoarse-grainde amfifiele modellen, geı̈ntroduceerd door Goetz en Lipowsky en door

Marrink en collega’s.

In hoofdstuk 2 wordt de gecoarse-grained model bilaag onderworpen aan twee langs het

bilaagoppervlak gerichte afschuifstromingen. Het eerste veld, met een vorticiteit loodrecht

op de bilaag, induceert een reguliere afschuifstroming in de bilaag. De weerstand van de

bilaag tegen deze stroming wordt gekarakteriseerd door een twee-dimensionale oppervlakte

viscositeit die, analoog aan de bekende drie-dimensionale viscositeit, de afschuifkracht per

eenheid lengte van de bilaag relateert aan de afschuifstroomsnelheid. Bij het tweede stro-

mingsveld, met een vorticiteit parallel aan de bilaag, slippen de twee samenstellende monola-

gen langs elkaar. Een frictiecoëfficiënt wordt gedefiniëerd als de verhouding van de slipkracht

per eenheid bilaagoppervlak en het snelheidsverschil tussen de monolagen.

De belangrijkste resultaten van hoofdstukken 3 en 4 zijn een bevestiging van de the-

orie van Seifert en Langer, die de relaxatiedynamica van undulaties in bilagen beschrijft,

en de conclusie, ondersteund door de gepresenteerde moleculaire dynamica simulaties, dat
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de relaxaties gedomineerd worden door de intermonolaagfrictie op lengteschalen beneden� 0 � 1µm. De relaxatietijden die uit deze evenwichtssimulaties volgen bevestigen de in-

termonolaag frictiecoëfficiënt die uit de niet-evenwichtssimulaties van hoofdstuk 2 werd

afgeleid. Een accurate schatting van de intermonolaag frictiecoëfficiënt blijkt niet alleen

van belang als een centrale parameter in de beschrijving van bilaagdynamica, maar ook

wegens zijn voorheen onderschatte consequenties in de berekening van de bilaagbuigbaar-

heidscoëfficiënt, en mogelijk andere statische eigenschappen, middels moleculaire dynamica

simulaties.

In hoofdstuk 5 wordt het gecoarse-grainde lipide model van Goetz en Lipowsky uit-

gebreid met paarwijs-optelbare frictie en random krachten, omdat de bilaag dynamica van

het originele model aanzienlijk sneller is dan dat van experimentele bilagen. Alhoewel het

model nu de experimentele viscositeiten van water en vloeibare alkanen reproduceert blijkt

de vertraging van de bilaagdynamica onvoldoende om een kwantitatieve overeenstemming

met de experimentele data te bewerkstelligen. Een gelijksoortige discrepantie wordt gevon-

den met de twee-staartige model lipiden van Marrink en collega’s. Door de staartlengtes te

variëren observeren we twee duidelijke trends in de stromingseigenschappen van bilagen. De

intermonolaagfrictiecoëfficiënt is gevoelig voor de asymmetrie van de staarten, omdat het

scheidingsvlak tussen de twee monolagen ruwer wordt door verstrengelingen van de lange

staarten. De oppervlakteafschuivingsviscositeit wordt gemoduleerd door de gecombineerde

lengte van de staarten, en variëert nauwelijks met de asymmetrie van de staarten. Experi-

mentele gegevens om deze resultaten mee te vergelijken zijn zeldzaam, en we hopen dat het

huidige werk een inspiratie is voor toekomstig experimenteel en simulatie onderzoek naar de

stromingseigenschappen van bilagen in relatie tot hun samenstellende lipiden.

In hoofdstuk 6 gebruiken we moleculaire dynamica simulaties om de mechanische eigen-

schappen van een gecoarse-grainde amfifiele worm-achtige micelle te berekenen. Allereerst

tonen we aan dat het model inherent stabiel is - de worm is voor zijn overleving niet van de

periodieke randvoorwaarden afhankelijk - waarmee het model zich onderscheidt van veel, en

mogelijk zelfs alle, voorgaande simulaties van wormen. We tonen aan dat een krachtenveld

gebaseerd op het Lipowsky model, zoals gebruikt in de simulaties, pas aan de stabiliteitscrite-

ria voldoet na een viervoudige vergroting van het volume van het kopdeeltje. De gemiddelde

structuurfactoren van een thermisch geëxciteerde spanningsloze worm in een periodieke si-
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mulatiedoos schalen met het golfgetal als S � q4, zoals voorspeld door het Helfrich model.

De persistentielengte en de buigbaarheidscoëfficiënt volgen dan uit de evenredigheidsfactor.

We zien een opmerkelijk verschil tussen de respons van de worm op elongatie en compressie.

Onder rek nemen de undulaties van alle modes af, de contourlengte neemt toe, en de lijnspan-

ning wordt linear in de lengte van de simulatiedoos. Onder sterke compressie nemen alleen

de undulaties van de eerste mode toe, terwijl de contourlengte en de lijnspanning een plateau

bereiken: de worm knikt. Beide situaties kunnen worden beschreven met het Helfrich model.
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